CoolGrid: Modeling the Right Half of the Hertzsprung-Russell Diagram

C. I. Short1 and P. H. Hauschildt2

1Department of Astronomy \& Physics and Institute for Computational Astrophysics, Saint Mary’s University, Halifax NS, Canada

2Hamburger Sternwarte, Hamburg, Germany

Abstract. We evaluate the ability of PHOENIX LTE models to fit spectrophotometry throughout the visible and near-UV bands for late-type stars of a wide range of stellar parameters.

1. Results

We present a grid of LTE atmospheric models and synthetic spectra that cover the spectral class range from mid-G to mid-K, and luminosity classes from V to III, that is dense in T_{eff} sampling ($\Delta T_{\text{eff}} = 62.5$ K), for stars of solar metallicity and of moderately metal-poor scaled solar abundance ($[\text{A/}H] = 0.0$ and -0.5).

All models have been computed with two choices of atomic line list: (a) the “big” line lists of Kurucz (1992) that best reproduce the broad-band solar blue and near-UV f_{λ} level, and (b) the “small” lists of Kurucz \& Peytremann (1975) that provide the best fit to the high-resolution solar blue and near-UV spectrum. We compare our model SEDs to a sample of stars carefully selected from the large catalog of uniformly re-calibrated spectrophotometry of Burnashev (1985) with the goal of determining how the quality of fit varies with stellar parameters, especially in the historically troublesome blue and near-UV bands.

We confirm that our models computed with the “big” line list recover the derived T_{eff} values of the PHOENIX NextGen grid, but find that the models computed with the “small” line list provide greater internal self-consistency among different spectral bands and closer agreement with the empirical T_{eff} scale of Ramírez \& Meléndez (2005), but not to the interferometrically-derived T_{eff} values of Baines et al. (2010). We find no evidence that the near UV band discrepancy between models and observations for Arcturus (α Boo) reported by Short \& Hauschildt (2003, 2009) is pervasive, and we suggest that Arcturus may be peculiar in this regard.

Our T_{eff} scale is compared to other T_{eff} calibrations in Figure 1.
Figure 1. Comparison of our best fit T_{eff} values with other T_{eff} calibrations. Squares: Series 1 models; Crosses: Series 2 models. Black symbols: Fit to the blue band; Gray symbols: fit to the red band. Upper panel: the dotted line is the empirical calibration of Ramírez & Meléndez (2005). Lower panel: the dotted line represents PHOENIX NextGen models fitted to stellar spectral libraries (Bertone et al. 2004). In the lower panel, triangles are T_{eff} values of Baines et al. (2010).

References