A Grid of MARCS Model Atmospheres for S Stars

S. Van Eck,1 P. Neyskens,1 B. Plez,2 A. Jorissen,1 B. Edvardsson,3 K. Eriksson,3 B. Gustafsson,3 U. G. Jørgensen,4 and Å. Nordlund5

1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, Brussels, Belgium
2GRAAL, Université de Montpellier II, Montpellier, France
3Department of Astronomy and Space Physics, Uppsala Astronomical Observatory, Uppsala, Sweden
4Niels Bohr Institute, Copenhagen, Denmark
5Centre for Star and Planet Formation, Geological Museum, Copenhagen, Denmark

Abstract. S-type stars are late-type giants whose atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. A large grid of S-star model atmospheres has been computed covering the range 2700 ≤ Teff(K) ≤ 4000 with 0.5 ≤ C/O ≤ 0.99. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle Teff, C/O and [s/Fe]. A “best-model finding tool” has been developed using a set of well-chosen indices and checked against photometry as well as low- and high-resolution spectroscopy. It is found that applying M-star model atmospheres (i.e., with a solar C/O ratio) to S stars can lead to errors in Teff up to 400 K. We constrain the parameter space occupied by the S stars of the vast Henize sample in terms of Teff, [C/O] and [s/Fe].

1. Introduction

The S class was originally defined by Merrill (1922) to designate a group of curious red stars which did not fit well into either class M (TiO stars) or classes R and N (carbon stars). Keenan (1954) clarified the situation by accepting as S stars only those exhibiting ZrO bands. The numerous attempts to link phenomenological spectral classification criteria to the physical parameters Teff, gravity, C/O, [s/Fe], and [Fe/H] (Keenan 1954; Keenan & McNeil 1976; Ake 1979; Keenan & Boeshaar 1980) only led to imprecise results, because low-resolution diagnostics are strongly entangled in terms of Teff, C/O and [s/Fe] variations. The only in-depth discussion of the thermal structure dates back to the pioneering paper of Piccirillo (1980). He already insisted on the strong influence of the C/O ratio on the atmospheric structure and spectra of S stars, in addition to effects due to s-process element overabundance. His investigation was, however, mostly limited to qualitative statements, due to obvious technical limitations. Most subsequent analysis of S stars has relied on models designed for M-type stars, not allowing for
C/O or [s/Fe] ratio changes. In the present paper we present a new grid of model atmospheres, superseding the one presented in Plez et al. (2003), covering most of the parameter space of S-type stars, and we attempt to provide a calibration of photometric indices in terms of T_{eff}, C/O and [s/Fe].

2. Model Atmospheres and Spectra

Since models for S star atmospheres are virtually non-existent, a grid of MARCS model atmospheres (see Gustafsson et al. 2008, for details on the models computation) for S stars has been calculated: $2700 \leq T_{\text{eff}}$ (K) ≤ 4000 (steps of 100 K); C/O = 0.5, 0.750, 0.899, 0.925, 0.951, 0.971, 0.991; [s/Fe] = 0, +1, +2 dex; [Fe/H] = −0.5 and 0 dex; log g = 0, 1, 2, 3, 4, 5.

All models were computed for $M = 1\ M_\odot$ and with $[\alpha/\text{Fe}] = −0.4 \times [\text{Fe}/\text{H}]$. Opacities as complete and accurate as possible were included, including polyatomic molecules and a specific ZrO line list (described in Plez et al., in preparation). Models were computed through opacity sampling with more than 10^5 wavelength points, local thermodynamic equilibrium, the mixing-length theory of convection, and spherical symmetry for log g \leq 2.

A total of 3522 converged model atmospheres were obtained. The model structure for T_{eff}=3000 K and [s/Fe] = +2 dex models is shown in Figure 1, where the major influence of C/O on the thermal structure is readily apparent (whereas the [s/Fe] ratio has less importance). The P_{gas} $\sim \tau_{500}$ relation (fixed mostly by log g) stays basically unchanged, whereas the T $\sim \tau_{\text{Ross}}$ relation (governed by the energy balance requirement) reaches higher temperatures at the surface for higher C/O. When C/O increases, P_{gas} at a given T increases. The latter effects are due to the large decrease of the partial pressures of H$_2$O and TiO, two major opacity contributors. Figure 2 illustrates how
the depth of TiO and ZrO bands decreases with increasing C/O, for different models of $T_{\text{eff}} = 3000$ K, and the influence on the spectra of the level of s-process enhancement.

3. Confronting the Models with Observed Color and Molecular Band Indices

Synthetic spectra are now compared to observations. The Henize sample of S stars (205 stars with $R \leq 10.5$ and $\delta \leq -25^\circ$; Henize 1960) is of particular interest for this purpose, since (1) it collects S stars with no bias against high galactic latitudes (Van Eck & Jorissen 2000b), and (2) a large amount of observational material has been collected for this sample (Van Eck et al. 2000). From these data, the $(V-K)_0$, $(J-K)_0$ color-color diagram, dereddened according to Drimmel et al. (2003), has been constructed (Figure 3). Similarly, a set of TiO and ZrO band-strength indices has been computed from the low-resolution spectra, and is displayed in Fig. 3. Their comparison with model values makes it possible to estimate T_{eff}, C/O and [s/Fe] since: (1) the $(V-K)_0$, $(J-K)_0$ color-color diagram disentangles T_{eff} and C/O; (2) the (TiO, ZrO) diagram disentangles T_{eff} and [s/Fe]. In both cases, there is a good segregation between M and S stars with, however, some degeneracy between C/O and [s/Fe], especially for low T_{eff}.

The $(V-K)_0$, $(J-K)_0$ color-color diagram reveals that, for a given $V-K$, the range in T_{eff} covered by models of different C/O ratios can be as large as 400 K. Therefore, the application to S stars of the usual M-star temperature scale based on the $V-K$ index (as done in the past when specific S-star models were unavailable) leads to errors on T_{eff} of up to 400 K.
Figure 3. Upper panels: Comparison between color indices of observed M (squares), S (triangles) and C (crosses) stars, and color indices computed from synthetic spectra of S stars for \([\text{[Fe/S]}] = 0\) (left) and \(+2\) (right). The models with the lowest temperature \((2700 \, \text{K})\) and highest C/O ratio \((0.991)\) are at the top of each “grid”. Lower panels: ZrO index versus TiO index for \([\text{[Fe/S]}] = 0\) (left) and \(+1\) (right). The grid corresponds to solar-metallicity, \(\log g = 0\) models ranging from \(T_{\text{eff}} = 4000 \, \text{K}, \, \text{C/O} = 0.5\) (around coordinates \(0.05, 0.05\) on the leftmost figure) to \(T_{\text{eff}} = 2700 \, \text{K}, \, \text{C/O} = 0.99\) (around \(0.3, 0.65\)). Stars clumping around (TiO,ZrO) = (0,0) are G and K giants. All S stars to the left of the region covered by the grid are SC stars.

4. The Atmospheric Parameters of S Stars

We have built a “best model finding tool”, based on an appropriate weighting of well-chosen photometric and narrow-band indices (de-reddened Geneva and VJHKL photometry, ZrO, TiO and NaD band strengths) and \(\chi^2\) minimization between observed and synthetic indices. The adequacy of the selected models has been checked on low-resolution spectra, de-reddened according to Cardelli et al. (1989); the agreement is very good in most cases (see Neyskens et al., this volume).

Figure 4 presents the distribution of Henize S giants in terms of temperature and C/O ratio. The temperature difference between Tc-poor (polluted binary) S stars and the cooler Tc-rich (genuine TP-AGB) S stars is clearly visible. Among Tc-rich stars, despite the small-number statistics, the expected gradual increase of the C/O ratio as the star cools down and ascends the TP-AGB is also visible.
Figure 4. Comparison of the T_{eff} distributions of Tc-rich (shaded histograms) and extrinsic (unshaded histograms) S stars. The 7 top panels separate the stars according to the C/O ratio.

This new grid of model atmospheres is an essential prerequisite to reliable spectroscopic chemical analyses of objects enriched in s-process nucleosynthesis products. It will allow us to pursue on a more quantitative basis the comparison between extrinsic and intrinsic S stars initiated by Van Eck & Jorissen (2000a).

Acknowledgments. SVE is FNRS Research Associate, and PN benefits from a “Boursier FRIA” fellowship (Belgium).

References

Discussion

Ireland: You have a new ZrO line list. Does this one use any recent laboratory data from the last 10 to 20 years?

Van Eck: We use a ZrO line list assembled in the same way as the TiO line list of Plez (1998) using indeed data from 1973-1995. We consider the isotopes 90,91,92,94,96ZrO.

Marigo: TP-AGB evolutionary models with accurate molecular opacities predict an increase of the effective temperature as the C/O ratio increases from say ~ 0.5 to ~ 1. This is caused by a pronounced opacity minimum when C/O~ 1. Is this trend consistent with your model atmospheres for S-stars?

Van Eck: Indeed the TiO and ZrO molecular bands disappear when approaching C/O=1. But we do not know the distances to the Henize stars to be able to see, at a given luminosity, a temperature shift for an increased C/O.

Srinivasan: Did you or do you plan to include the effects of dust in comparison to data?

Van Eck: We don’t yet include the effects of dust, but indeed we plan to estimate them. The problem is to know what exact species form when C/O is approaching 1.

Wing: From a classification point of view, it has always interested me that S stars show some of the same spectral characteristics as M dwarfs - the strong D-lines and CaI$\lambda 4226$, and enhanced metallic hydrides. Does your line list for synthetic spectra include CaH? I think that may be responsible for the strong sensitivity to C/O at around 6800Å.

Van Eck: Yes our line list includes CaH, which indeed has prominent bands around 6400Å and 6800Å, especially for high C/O ratios.

Zijlstra: The sample of S stars is defined spectroscopically. How well do the M and MS stars separate in your model? Is there a smooth transition or is it well defined?

Van Eck: Our grid of model atmospheres covers the range C/O=0.5-0.99. Hence M stars, with C/O=0.5 are modalized. The band depth indices computed on the synthetic spectra of M and MS stars are in very good agreement with those computed from observed M and MS star’s spectra. The agreement of photometric indices is also very good.