COMMISSION 36
THEORY OF STELLAR ATMOSPHERES
THÉORIE DES ATMOSPHÈRES STELLAIRES

PRESIDENT
John D. Landstreet

VICE-PRESIDENT
Martin Asplund

PAST PRESIDENT
Monique Spite

ORGANIZING COMMITTEE
Suchitra B. Balachandran,
Svetlana V. Berdyugina,
Peter H. Hauschildt, Hans G. Ludwig,
Lyudmila I. Mashonkina,
K. N. Nagendra, Joachim Puls,
M. Sofia Randich,
Grazina Tautvaisiene

TRIENNIAL REPORT 2006-2009

1. Introduction

Commission 36 covers the whole field of the physics of stellar atmospheres. The scientific activity in this large subject has been very intense during the last triennium and led to the publication of a large number of papers, which makes a complete report quite impractical. We have therefore decided to keep the format of the preceding report: first a list of areas of current research, then Web links for obtaining further information.

Many conferences and workshops have been held during the period covered by this report on topics related to the interests of Commission 36. Some of them were sponsored by IAU: IAU Symposium No. 231 Astrochemistry throughout the Universe: Recent Successes & Current Challenges; IAU Symposium No. 233 Solar Activity and its Magnetic Origin; IAU Symposium No. 239 Convection in Astrophysics; IAU Symposium No. 240 Binary Stars as Critical Tools and Tests in Contemporary Astrophysics; IAU Symposium No. 243 Star-Disk Interaction in Young Stars; IAU Symposium No. 247 Waves and Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology; IAU Symposium No. 250 Massive Stars as Cosmic Engines; and IAU Symposium No. 252 The Art of Modelling Stars in the 21st Century. Our members also participated in many of the Joint Discussions and Special Sessions at the IAU XXVI General Assembly in Prague, August 2006.

Meetings not organised under the auspices of the IAU also attracted interest from our members. Among others, the following meetings were attended: Mass loss from stars and the evolution of stellar clusters, May 2006, Lunteren, Netherlands; The Metal Rich Universe, June 2006, La Palma, Spain; 14th Cambridge Workshop on Cool stars, stellar systems and the Sun, 6-10 November 2006, Pasadena, USA; International Workshop
2. Primary research areas 2005 - 2008

2.1. Physical processes

General properties – Line-blanketed, unified NLTE models of massive star atmospheres (including winds) available to the community. Grids of synthetic fluxes and spectra. Calibrating parameterized models through physical modeling. Calibrating abundance determinations by filter photometry or low-resolution spectroscopy.

Stationary processes within stellar atmospheres – Convection (granulation) in surface layers, and its effects upon emergent spectra. Interplay between convection and non-radial pulsation. Scales of surface convection in stars in different stages of evolution. Hydrodynamic simulations of entire stellar volumes.

Forbidden lines and maser emission – Molecules in atmospheres of cool giant stars. Effects of fluorescence. Permitted and forbidden lines from shocked atmospheres of pulsating giants. Masers and laser emission from stellar envelopes.
2009IAUTA..27..222L

Molecules – Theory of the molecular Paschen-Back effect, scattering and Hanle effect in molecular lines in the Paschen-Back regime.

2.2. Stellar structure

Dust, grains, and shells – Formation of stellar dust shells. Grains in the atmospheres of red giants, and in T Tauri stars.

2.3. Different classes of objects

Stellar parameters of massive stars – significant downscaling of effective temperature scale of OB-stars, due to line-blanketing and mass-loss effects. Rotation rates for massive stars, as a function of metallicity. VLT-FLAMES survey of massive stars: 86 O-stars and 615 B-stars in 8 different clusters (Milky Way, LMC, SMC) observed and analyzed.

White dwarfs and neutron stars – Radiative transfer in magnetized white-dwarf atmospheres. Stokes-parameter imaging of white dwarfs. Molecular opacities in white dwarfs. Broad-band polarization in molecular bands in white dwarfs. Atmospheres and spectra of...
neutron stars. Effects of vacuum polarization and accretion around magnetized neutron stars.

Interaction with exoplanets – Effects of planets on the atmospheres of evolved red giants. Characteristics of stars hosting exoplanets.

2.4. Development of techniques

Computational techniques – Parallel (super)computing to simulate convective surface regions, and throughout complete stars. 2- and 3-D NLTE unified models including winds. Neural networks and machine-learning algorithms. Analysis of stellar spectra using genetic algorithms. Preparing for the widely distributed network of computational tools and shared databases being developed for the forthcoming computing infrastructure GRID.

2.5. Applications of stellar atmospheres

Besides their study per se, stars are being used as probes for other astrophysical problems:

Exoplanets – Variable wavelength shifts in stellar spectra serve as diagnostics for radial-velocity variations induced by orbiting exoplanets. Atmospheric modeling can indicate which spectral features are suitable as such probes, and which should be avoided due to their sensitivity to intrinsic stellar activity.

Chemical evolution in the Galaxy – How accurately observations of stellar spectral features can be transformed into actual chemical abundances depends sensitively on the sophistication of the stellar model atmospheres.

Kinematics of the Galaxy – Planned space missions intend to measure radial velocities for huge numbers of stars. Model atmospheres are used to identify suitable spectral features for such measurements in different classes of stars.

Chemical evolution of Galaxies – Accurate measurements of metallicity gradients in various galaxies based on BA supergiants.

Evolution of First Stars – Effects from winds may be stronger than expected, due to fast rotation, continuum driving or self-enrichment. Strong mass-loss offers possibility to avoid Pair-Instability SNe.

Distance scales – Flux-weighted gravity-luminosity relationship as a tool to derive independent, precise extragalactic distances from A-supergiants.

Galaxies and cosmology – Stars are the main observable component of galaxies, and population synthesis for galaxies utilize model atmospheres to interpret observations. Cosmological origin of the lowest-metallicity stars.

3. Web links for further information

The following collection of links provides introductions and overviews of several significant subfields of the physics of stellar atmospheres.

3.1. Calculating atmospheric models and spectra

ATLAS, SYNTHE, and other model grids: <kurucz.harvard.edu>.

MARCS, model grids: <www.marcas.astro.uu.se>.

Tuebingen: Stellar atmospheres - grid of models: <astro.uni-tuebingen.de/groups/stellar>.

CCP7 - Collaborative Computational Project: <ccp7.dur.ac.uk>.
CLOUDY - photoionization simulations: <www.pa.uky.edu/~gary/crudy/).
MULTI - non-LTE radiative transfer: <www.astro.uio.no/~matsc/mul22>.
PANDORA - atmospheric models and spectra:
 <www.cfa.harvard.edu/~avrett/pandora.lis.copy>.
PHOENIX - stellar and planetary atmosphere code:
 <www.hs.uni-hamburg.de/EN/For/ThA/phoenix/>.
STARLINK - theory and modeling resources:
Synthetic spectra overview: <www.am.ub.es/~carrasco/models/synthetic.html>.
TLUSTY - model atmospheres: <tlusty.gsfc.nasa.gov>.
WM-Basic: unified hot star model atmospheres incl. consistent wind structure:
 <www.usm.uni-muenchen.de/people/adi/adi.html>.
PoWR: The Potsdam Wolf-Rayet Models, grid of synthetic spectra:
 <www.astro.physik.uni-potsdam.de/~wrh/PoWR/powgrid1.html>.

3.2. Useful links from research groups or individual researchers

Vienna: Stellar atmospheres and pulsating stars:
 <ams.astro.univie.ac.at/main.php>.
Potsdam: Stellar convection:
 <www.aip.de/groups/sternphysik/stp/convect.neu.html>.
R. F. Stein: Convection simulations & radiation hydrodynamics:
 <www.pa.msu.edu/~steinr/research.html#convection>.
D. Dravins: Stellar surface structure:
A. Collier Cameron: Starspots and magnetic fields on cool stars:
 <star-www.st-and.ac.uk/~acc4/coolpages/imaging.html>.
D. F. Gray: Stellar rotation, magnetic cycles, velocity fields:
 <astro.uwo.ca/~dfgray/>.
J. F. Donati: Magnetic fields of non degenerate stars:
 <webast.ast.obs-mip.fr/users/donati/>.
M. Jardine: Stellar coronal structure:
 <capella.st-and.ac.uk/~mmj/Welcome_research.html>.
Munich: Hot stars: <www.usm.uni-muenchen.de/people/adi/adi.html>,
 <www.usm.uni-muenchen.de/people/adi/wind.html>.
S. Jeffery: Stellar model grids, hot stars: <star.arm.ac.uk/~csj>.
P. Stee: Be-star atmospheres and circumstellar envelopes:
 <www.obs-nice.fr/stee/Bemodel.html>,
N. Przybilla: NLTE atmospheres of massive stars, extragalactic stellar astronomy:
 <www.sternwarte.uni-erlangen.de/~przybilla/research.html>.
S. Owocki: Theory of line-driven winds, hydrodynamics, rotation, magnetic fields:
 <www.bartol.udel.edu/~owocki/>.
R. Townsend: Magnetically-Controlled Circumstellar Environments of Hot Stars:
 <zuserver2.star.ucl.ac.uk/~rhdt/research/magnetic/>.
P. Crowther: Hot Luminous Star Research Group:
 <shef.ac.uk/physics/people/pacrowther/>.
R. Kudritzki: Hot Stars and Winds, Extragalactic Stellar Astronomy:
 <www.ifa.hawaii.edu/~kud/kud.html>.
J.L. Linsky: Cool stars, stellar chromospheres and coronae:
 <jilawww.colorado.edu/~jlinsky/>.
D. Montes et al.: Libraries of stellar spectra:
<www.ucm.es/info/Astrof/spectra.html >.
R. J. Rutten: Lecture notes: Radiative transfer in stellar atmospheres:
<www.fys.ruu.nl/~rutten/node20.html >.

John D. Landstreet
president of the Commission