PROPAGATION OF P-MODES INTO THE SOLAR ATMOSPHERE

Y. Taroyan, R. Erdélyi, and C. Malins

Solar Physics and upper-Atmosphere Research Group, Department of Applied Mathematics, University of Sheffield, Sheffield, S3 7RH, England

ABSTRACT

We present a simple 1D two-layer model for the study of the propagation of p-modes into the solar atmosphere. The wave motion is governed by the Klein-Gordon equation. Analytical expressions for the solutions are derived. Depending on the frequency, the waves can be either propagating or evanescent. The analytical solutions are used to estimate the flow of energy into the solar atmosphere as a function of frequency. The results predicted by the model are compared with the results derived from an empirical model with a VAL atmosphere. We conclude that the presented model could be useful in interpreting the dynamics and energetics of the solar atmosphere.

Key words: p-modes; magnetic flux tubes; solar atmosphere.

1. INTRODUCTION

According to the traditional view, the solar global p-mode oscillations have little effect as far as the the energetics and the dynamics of the solar atmosphere are concerned. However, over the past few years, there have been some significant advances and a sizeable amount of literature has been dedicated to the study of the leakage and propagation of p-modes into the solar atmosphere. Propagating slow magnetoacoustic waves with periods around 5 minutes were detected near the footpoints of coronal loops (Berghmans & Clette 1999; De Moortel et al. 2000). De Pontieu et al. (2005) showed that these waves could be associated with the p-mode oscillations. De Pontieu, et al. (2003) demonstrated that intensity oscillations in the upper transition region above active regions are excited at chromospheric or even photospheric heights and show a correlation with the p-modes. De Pontieu, Erdélyi & James (2003) pointed out that inclined magnetic field lines create favourable conditions for the leakage of the p-modes into the solar atmosphere and the generation of spicules. The observations of Marsh & Walsh (2006) present an additional evidence for the propagation of p-modes into the solar corona along the magnetic field. There have been recent speculations regarding the modulation of the reconnection rate of magnetic field lines by p-modes required for the excitation of explosive events (Chen & Priest 2006). It has been recognised that significant steps forward can be made if the solar interior and atmosphere are treated as part of a single physical system. In the light of the above-mentioned developments, it becomes clear that analytical models are often required for a deeper understanding of the physical processes, which link the waves in the interior to the waves in the atmosphere.

![Figure 1. A 1D two-layer model depicting a stratified solar atmosphere. The lower part of the atmosphere (region 1) is separated from the upper part 2 by a density and temperature discontinuity. The waves are launched at z = 0 and propagate in the vertical z-direction.](image)

2. MODEL AND GOVERNING EQUATIONS

The proposed 1D model is shown in Figure 1. The atmosphere is stratified by gravity. The lower part of the atmosphere 1 is separated from the upper part 2 by a discontinuous decrease and increase in the equilibrium density and temperature, respectively. The discontinuity is located at $z = L$. Such a model could be a simple representation of the photosphere-chromosphere and chromosphere-corona environments. Slow magnetoacoustic waves are constrained to propagate upwards along the magnetic field. Assuming that the magnetic
3. RESULTS AND DISCUSSION

For simplicity, we assume that Q is a complex variable. The boundary condition (10) is replaced with

$$\lim_{z \to 0} Q(z,t) = I(\omega)e^{-i\omega t}. \quad (11)$$

An equation of energy can be derived by substituting the operator (9) into the expression

$$\frac{\partial Q^*(z,t)}{\partial t} \mathcal{L} Q(z,t) + \frac{\partial Q(z,t)}{\partial t} \mathcal{L} Q^*(z,t),$$

where \ast denotes complex conjugation. The result is

$$\frac{\partial W}{\partial t} = -\frac{\partial S}{\partial z} \quad (12)$$

where

$$W = \frac{1}{2c^2} \left(\frac{\partial Q}{\partial t} \right)^2 + c^2 \left| \frac{\partial Q}{\partial z} \right|^2 + \Omega^2 |Q|^2 \quad (13)$$

is the mathematical wave energy density and

$$S = -\Re \left(\frac{\partial Q}{\partial t} \frac{\partial Q^*}{\partial z} \right) \quad (14)$$

is the component of the mathematical wave energy flux in the z direction. The corresponding physical quantities differ from the expressions (13) and (14) by scaling factors. Eq. (8) possesses steady state solutions of the form

$$Q(z,t) = A_n(\omega)e^{i(k_n(\omega)z - \omega t)} + B_n(\omega)e^{-i(k_n(\omega)z + \omega t)} \quad (15)$$

where the index $n = 1, 2$ represents the corresponding quantities in the lower $0 < z < L$ and upper $z > L$ regions. The wavenumber $k_n(\omega), n = 1, 2$ is defined as follows:

$$k_n = \begin{cases} \frac{-\Omega^2 - \omega^2}{c_n}, & \omega < \Omega_n, \\ \frac{\sqrt{\Omega^2 - \omega^2}}{c_n}, & \omega > \Omega_n, \end{cases} \quad (16)$$

where c_n and Ω_n are the sound speed and cutoff frequency in the corresponding region. The coefficients A_n, B_n can be uniquely determined, if we impose certain physical requirements on the solution Q. The first condition follows from the requirement of continuity of the normal component of the Lagrangian displacement and the total equilibrium pressure at $z = L$. These conditions and Eq. (7) imply

$$Q(z,t)\big|_{z=L+} = Q(z,t)\big|_{z=L-} \quad (17)$$

deletion of z by the condition $Q(z,t)$ must be continuous across $z = L$. By integrating Eq. (6) with respect to z from $L - \varepsilon$ to $L + \varepsilon$ and taking the limit $\varepsilon \to 0$, we find that $\partial u/\partial z$

$$\frac{\partial u}{\partial z} \left|_{z=L+} = \frac{\partial u}{\partial z} \left|_{z=L-} \right. \quad (18)$$

where $v = v(\omega)$ is the frequency dependent amplitude of the driver.

© European Space Agency • Provided by the NASA Astrophysics Data System
should be continuous across $z = L$. Therefore, the second matching condition for $Q(z, t)$ has the form
\[
\left. \left(\frac{\partial Q}{\partial z} + \frac{1}{2\Lambda_1} Q \right) \right|_{z=L^-} = \left. \left(\frac{\partial Q}{\partial z} + \frac{1}{2\Lambda_2} Q \right) \right|_{z=L^+}. \tag{18}
\]

We also impose an outgoing wave condition at $z = L^+$.

For $\omega > \Omega_2$ this implies $B_2 = 0$, consistent with the fact that the system contains no other sources of wave energy except at $z = 0$. Therefore, there is no energy flux from the upper region 2 into the lower region 1:
\[
S|_{z=L^+} = -\Re \left(\frac{\partial Q}{\partial t} \frac{\partial Q^*}{\partial z} \right) \bigg|_{z=L^+} = k\omega |A_2|^2 \geq 0. \tag{19}
\]

On the other hand, for $\omega < \Omega_2$ we have to set $A_2 = 0$ in order to satisfy the requirement of finite wave energy density at $z = \infty$.

The resulting set of algebraic equations is solved for the coefficients A_n, B_n. We are mainly interested in the case $\omega > \Omega_2$, for which we obtain
\[
A_2(\omega) = \frac{I(\omega)k_1 \exp(-ik_2L)}{e^{ik_1L} - \sin(\omega L)(ik_1 + ik_2 + \frac{2\Lambda_2}{2\Lambda_1} - \frac{1}{2\Lambda_1})},
\]
\[
A_1(\omega) = \frac{I(\omega) - A_2(\omega) \exp[i(k_1 + k_2)\frac{L}{2}]}{1 - \exp(2ik_1L)},
\]
\[
B_1(\omega) = I(\omega) - A_1(\omega). \tag{20}
\]

The quantity $|A_2|$ determines the energy flux in the region above $z = L$ and represents the amplitude of the transmitted waves. We normalise length with respect to $2\Lambda_1$ and speed with respect to the sound speed c_1. This implies $\Omega_1 = 1$. The following parameter values are set: $T_2/T_1 = 100, L/\Lambda_1 = 6$. The quantities $|A_2|/I$ (thick line) and $|A_1|/I$ (thin line) are plotted in Figure 2 for $\omega < 1$ and $\omega > 1$. For $\omega < \Omega_1 = 1$ these coefficients are small meaning that very little energy is transmitted into the upper region. The scaled velocity Q is evanescent in the lower region as A_1 is small. This coefficient tends to infinity as the frequency approaches the cutoff value. However, the form of Eq. (15) implies that the solution remains finite for $0 < z < \infty$. When the frequency exceeds the cutoff value in the lower region, the absolute value of the coefficient A_2 increases and the amplitudes $|A_1|, |A_2|$ approach the amplitude of the original wave I as $\omega \to \infty$, i.e., the wave starts to propagate with no
reflection at the boundary $z = L$. A time-distance plot of the scaled velocity $u(z, t)/I$ is presented in Figure 3. The frequency exceeds the cutoff value ($\omega = 2.1\Omega_1$) and, therefore, the wave amplitude increases as it propagates towards the boundary at $L = 3$. An interesting feature occurs when the frequency of the propagating wave is close to the cutoff value in region 1. The time-distance plot for the case with $\omega = 1.1\Omega_1$ is plotted in Figure 4. It can be seen that the wave behaves like a standing wave in region 1 as opposed to region 2 where it propagates. A similar picture occurs when the model shown in Figure 1 is replaced with an empirical model with a VAL (Vernazza, Avrett, Loeser) atmosphere. The corresponding plot is shown in Figure 5. The agreement leads us to the conclusion that the simple model adopted in the present paper is a reasonable approximation to the real solar atmosphere. The slight discrepancy in the inclination of the curves in the upper regions is due to the increasing sound (propagation) speed in the empirical model as opposed to the constant sound speed c_2 in the present model. To explain the standing wave feature in the lower atmosphere, we set $k_1 = 0$ meaning that the frequency is close to the cutoff value. The solution $Q(z, t)$ takes the form

\[Q(z, t) = (A_1 + B_1 z) \exp(-i\omega t) \]

\[A_1 = I, \quad B_1 = 0, \quad A_2 = \frac{I \exp(-ik_2 L)}{1 - i k_2 L + \frac{k_2^2 L}{2\lambda_1} - \frac{L}{2\lambda_2}} \]

meaning that the real part of the solution has the form $Q = I(\omega) \cos(\omega t)$, i.e., it becomes a standing wave with a constant amplitude everywhere in the interval $0 < z < L$. This explains the feature seen in Figures 4 and 5.

ACKNOWLEDGMENTS

Y.T. is grateful to PPARC for financial support. R.E. acknowledges M. Kéri for patient encouragement and NSF, Hungary (OTKA, ref. no. TO43741). The simulations were run on the White Rose Grid (Iceberg node at Sheffield University).

REFERENCES