VARIABILITY AND DYNAMICS OF THE OUTER ATMOSPHERIC LAYERS IN THE QUIET SOLAR NETWORK

P. GÖMÖRY¹, J. RYBÁK¹, A. KUČERA¹,
W. CURDT² and H. WÖHL³

¹Astronomical Institute of the Slovak Academy of Sciences,
05960 Tatranská Lomnica, Slovakia
²Max-Planck-Institut für Sonnensystemforschung,
37191 Katlenburg-Lindau, Germany
³Kiepenheuer-Institut für Sonnenphysik,
Schöneckstr. 6, 79104 Freiburg, Germany

UDC 523.945-46
Conference paper

Abstract. A detailed study of the temporal evolution of the chromospheric He I 584.33 Å and the transition region O v 629.73 Å emission line intensities of quiet supergranular network of the Sun near disk centre observed with Coronal Diagnostic Spectrometer (CDS) is presented. A wavelet analysis of the 1729 s (28.8 min) long temporal series was performed in order to derive the duration as well as periods of the chromospheric and the transition region oscillations. The He I line intensities show significant power for periods around 300 s (3.3 mHz), which is relevant only in the second half of the observing sequence (between 800 – 1700 s). The temporal evolution corresponding to the O v line intensities shows strong power around the period of 400 s (2.5 mHz), which is significant during the whole observing sequence as well as the oscillation of lower power for periods of around 250 s (4.0 mHz), which is present only in the middle of the observing sequence (between 700 – 1300 s).

Key words: Sun - chromosphere - transition region - oscillations

1. Introduction

Previous analyses to detect periodical phenomena were based on Fourier transformation techniques and could only provide information about periods of oscillations but it could not provide any information on eventual
temporal variations of them (Bocchialini et al., 1994; Doyle et al., 1998). This diagnostic can be improved with the use of the wavelet transformation which is now used in many fields of physics, e.g. in geophysics (Torrence and Compo, 1998) and in astrophysics (Rybáč and Dorotovič, 2002). The localised (in time) nature of the wavelet transform allows us to study also the duration of any statistically significant oscillation. It was well known that the chromosphere and the transition region lines show intensity power in the 250 s to 500 s (2 mHz to 4 mHz) range (Doyle et al., 1998) but the fact that the network oscillations are bursty and intermittent was revealed only after using the wavelet transformation technique (Hansteen et al., 2000; Banerjee et al., 2001). These oscillations are considered to be due to waves, which are produced in short bursts with coherence times of about 10 min to 20 min. In this contribution we present the results obtained from the wavelet analysis of the temporal variations of the chromospheric He I and the transition region O V line intensities measured by the SOHO/CDS instrument in order to study properties of oscillations in/above the supergranular network of the Sun.

2. Observations and Data Reduction

The data set, analysed in this contribution, was obtained by the normal incidence part (NIS) of CDS (Harrison et al., 1995) on 14 May 1998 between 23:25 UT and 23:53 UT as a part of the joint observing programme JOP 781 (Kučera et al., 1999). A quiet solar region near disk centre was observed in the chromospheric spectral line He I 584.33 Å (log \(T = 4.5\)) and in the transition region spectral line O V 629.73 Å (log \(T = 5.4\)) (Mazzotta et al., 1998; Young et al., 2003). A 1729 s (~28.8 min) long data set of 190 spectral images with exposure time 5 s and with a cadence of 9.1 s was obtained using the 2” wide slit (oriented in the north–south direction) in sit-and-stare mode. Therefore the slit has scanned an area almost 4.4” wide in the east–west direction during the observations. Before analysis the data were corrected for the most obvious instrumental features of the CDS/NIS detector (i.e spectrum rotation and tilt, micro-channel plate burn-in, CCD flatfield) using several routines2 of the SolarSoft software package (Freeland and Handy, 1998). The Solar Software is based on the

1 JOP 78 proposal: www.astro.sk/~choc/jop078.prop/
2 More details: http://solg2.bnsr.iac.uk/software/uguide/uguide.shtml
Figure 1: 2D space-time maps of the He I and the O V line intensities. The studied area, so-called typical network, is shown in the area between 111" and 116". The intensity values are given in erg cm$^{-2}$ s$^{-1}$ sr$^{-1}$ Å$^{-1}$. The horizontal axis describes spatial direction and the vertical axis describes time. The solar rotation was not compensated, so the vertical axis presents the spatial extent of the observed solar features as well.

Interactive Data Language (IDL) software. The data were then converted from counts into absolute physical units. A single Gaussian profile with a linear background was then fitted to each spectral profile using the relative weights of the data (Poisson statistics). This was accomplished using the standard routine CFIT which is based on the Levenberg-Marquardt method of minimization of the least squares (Press et al., 1986). Finally, the line intensities and the Doppler shifts were determined as our primary data and their square root errors were calculated. The wavelength scales were adjusted using the overall redshift of the transition region spectral lines (Peter and Judge, 1999) and the laboratory wavelengths of the He I and the O V lines (Macpherson and Jordan, 1999). Only primary data estimated with a fit uncertainty χ^2 lower than 10 erg2 cm$^{-4}$ s$^{-2}$ sr$^{-2}$ Å$^{-2}$ were used for the analysis. The resulted time-space maps of the He I and the O V line intensities are displayed in Figure 1.

3More details: www.rsinc.com/idl
4More details: http://orpheus.nascom.nasa.gov/cds/swnote/cds_swnote_49.ps
5More details: http://orpheus.nascom.nasa.gov/cds/swnote/cds_swnote_47.ps
3. Results and Discussion

The part of the supergranular network under study is visible in Figure 1 between 111" and 116". This area explicitly excluded the explosive event visible in the O V spectral line (Gömöry et al., 2003) and we named it as the "typical network". The averaged temporal variations of the He I and the O V line intensities (Figure 2) were created as spatial average over four primary data (∼7") from the selected pixels along the slit in each exposure. The standard deviations of the primary data from the averaged values were also calculated. Each averaged variation was finally smoothed using the running mean of five points.

The wavelet analysis of the temporal variations of the He I and the O V line intensities was performed in order to determine periods and the duration of possible oscillations. The Morlet wavelet (Grossman and Morlet, 1984), as analysing function, and the value of the wavenumber \(\omega \) equal to 6 (high temporal resolution) were used for the computation of the continuous wavelet transform which was performed using a program provided by Torrence and Compo.\(^6\) As significance test, the confidence level at 99% was

\(^6\)More details: http://paos.colorado.edu/research/wavelets
calculated using a white noise background spectrum. The main advantages as like as disadvantages of the wavelet analysis were studied in details by De Moortel et al. (2004).

The resulting wavelet power spectrum plots are displayed in Figure 3. The darker contour regions in these plots indicate the locations of the highest power, i.e. the location of the most probable periods in the time series. Note that since the solar surface rotation was not compensated during the measurements, we are not able to say anything about periods above 500 s (2.0 mHz). The wavelet analysis of the He I line intensities (Fig. 3, left panel) revealed a significant oscillation signal with a period around 300 s (3.3 mHz) in the time interval from 800 s to 1700 s (i.e. 15 min). In the case of the O V line intensities the wavelet power spectrum (Fig. 3, right panel) shows strong power for periods of around 400 s (2.5 mHz). This period is relevant in the whole time interval of the observing sequence. Note that the wavelet power spectrum of the O V line intensities shows also lower power around the period of 250 s (4 mHz) in the times from 700 s to 1300 s (i.e. 10 min). No considerable power was found for the He I and the O V line intensities with periods below 200 s (5 mHz).

Banerjee et al. (2001) reported oscillations in the two lower chromospheric lines (NI 1319 Å and CI 1335 Å) detected in the supergranular network. They revealed that the intensities of the NI line show maximum power around 270 s (3.7 mHz). They also remitted on the intermittent na-
ture of these oscillations which typical life times are from 10 min to 15 min. For the C II line intensities they found considerable power with a peak around 384 s (2.6 mHz), with a lifetime of the order of 20 min. The results obtained for the N I line intensities are in good agreement with our findings for the chromospheric spectral line He I. In case of the O V line intensities Banerjee et al. (2001) found strong power in the range from 250 s to 666 s (1.5 mHz to 4.0 mHz), with the strongest peaks at 285 s (3.5 mHz) and 588 s (1.7 mHz). This is confirmed by our results obtained from the wavelet analysis of the O V line intensities.

4. Conclusion

A wavelet analysis of the temporal evolution of the chromospheric He I and the transition region O V line intensities was performed. The strongest power around periods of 300 s and 400 s was observed for the He I and the O V line intensities, respectively. The intermittent nature of these oscillations was also shown. Our results were compared with the previous work of Banerjee et al. (2001) and good agreement was found.

Acknowledgements

CDS is part of SOHO, the Solar and Heliospheric Observatory, which is a mission of international cooperation between ESA and NASA. P.G., J.R. and A.K. are grateful to the Slovak grant agency VEGA for supporting this work (grant No. 2/3015/23). This research is part of the European Solar Magnetism Network (EC/RTN contract HPRN-CT-2002-00313). Wavelet software was provided by C. Torrence and G. Compo (http://paos.colorado.edu/research/wavelets).

References

PROMJENLJIVOST I DINAMIKA VANJSKIH SLOJEVA ATMOSFERE U UZORKU MREŽE MIRNOG SUNCA

P. GÖMÖRY1, J. RYBÁK1, A. KUČERA1, W. CURDT2 i H. WÖHL3

1Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovakia
2Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
3Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany

UDK 523.945-46
Izlaganje sa znanstvenog skupa

\textbf{Sažetak.} Prikazuje se detaljno istraživanje vremenskog razvoja intenziteta emisijske kromosferske spektarne linije He I na 584.33 Å i emisijske linije prijelaznog sloja O V na 629.73 Å mirnog supergranularnog uzorka mreže u blizini središta Sunčeva diska opažanog Koroninim Dijagnostičkim Spektrometrom (KDS). Provedena je "wavelet" analiza vremenskog niza trajanja od 1729 s (28.8 min) da bi se odredilo trajanje i periodi kromosferskih oscilacija i oscilacija prijelaznog sloja. Intenziteti He I linije pokazuju znatnu snagu za periode od oko 300 s (3.3 mHz) koja je relevantna samo u drugoj polovici opažanja (između 800 i 1700 s). Vremenski razvoj koji se dobiva iz intenziteta O V linije pokazuje jaku snagu oko perioda od 400 s (2.5 mHz), koji je značajan tijekom cijelog razdoblja opažanja, kao i oscilacije s manjom snagom za periode od oko 250 s (4.0 mHz) koja se pojavljuju samo u sredini opažakog niza (između 700 i 1700 s).

\textbf{Ključne riječi:} Sunce - kromosfera - prijelazni sloj - oscilacije