ROTATIONAL MODULATION OF NORTHERN AND SOUTHERN ACTIVITY TRACERS

M. TEMMER1, A. VERONIG1,2, J. RYBÁK3 and
A. HANSLMEIER1

1Institute for Geophysics, Astrophysics and Meteorology,
University of Graz, Universitätsplatz 5, A-8010 Graz, Austria
2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Astronomical Institute / SAS,
SK-05960 Tatranská Lomnica, Slovak Republic

UDC 523.98-327
Conference paper

Abstract. We study solar activity phenomena, Hα flares and sunspots, with respect
to their periodical occurrence related to the solar rotation. The analysis is carried out
separately for the northern and the southern hemisphere. Furthermore, flare occurrences
are studied with respect to different importance classes, and the results are compared
to the predominant periods derived from Sunspot Numbers. Significant asymmetries are
obtained between the northern and southern activity for both Sunspot Numbers and flare
occurrences. Differences between Sunspot Numbers and flares result particularly when
only higher energetic flares are considered. A 24-day period is found for large flare events
in both hemispheres which is not detected in Sunspot Numbers.

Key words: solar flares - energy release - solar cycle

1. Introduction

The appearance of sunspots on the solar disk is not uniform with respect
to the solar equator resulting in significant north-south (N-S) asymmetries
(see, e.g., White and Trotter, 1977; Carbonell, Oliver and Ballester, 1993;
Temmer, Veronig and Hanslmeier, 2002, and references therein). In the
same way solar flares reveal a N-S asymmetry (e.g., Bai, 1987; Garcia, 1990;
Li, Schmieder and Li, 1998; Temmer et al., 2001, and references therein).
Besides the asymmetrical occurrence of these activity phenomena on the
solar disk also the rotational periods are subject to a N-S asymmetry. These
M. TEMMER ET AL.: ROTATIONAL MODULATION OF TRACERS

Table I: Definition of groups of Hα flares together with the number of events for the time span 1975–2001, separately for the northern and the southern hemisphere.

<table>
<thead>
<tr>
<th>Hα importance</th>
<th>no. Hαnorth</th>
<th>no. Hαsouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, 1, 2, 3, 4</td>
<td>49 024</td>
<td>51 345</td>
</tr>
<tr>
<td>1, 2, 3, 4</td>
<td>5 257</td>
<td>5 471</td>
</tr>
<tr>
<td>2, 3, 4</td>
<td>646</td>
<td>643</td>
</tr>
</tbody>
</table>

asymmetrical behaviours have been also observed in the photospheric magnetic field (see Antonucci, Hoeksema and Scherrer, 1990; Henney and Harvey, 2002).

In the present paper we investigate Hα flare occurrences and Sunspot Numbers with respect to dominant periods related to the differential rotation together with their localization in time. The southern and northern hemisphere are considered separately. Furthermore, the dependence of predominant periods on the flare importance is studied.

2. Data and Methods

Time series of daily numbers of Hα flares are constructed using the Hα flare data reported in the Solar Geophysical Data. Daily hemispheric Sunspot Numbers for the time span 1975–2000 are taken from the “Catalogue of hemispheric Sunspot Numbers” available online1 (for a detailed description see Temmer, Veronig and Hanslmeier, 2002) as well as from the Sunspot Index Data Center for the year 2001. The Hα flares are subdivided into three groups based on their importance class, i.e. all flares, flares of importance ≥ 1, and flares of importance ≥ 2 (see Table I). We applied periodograms (Lomb, 1976; Scargle, 1982; Horne and Baliunas, 1986) for the determination of dominant periods, and wavelet analysis (Torrence and Compo, 1998) in order to study where the periodical occurrences are localized in time.

Both the periodogram and the wavelet analysis are carried out for a period range from 20–40 days (All periods stated in this paper are synodic), in order to cover periods related to the solar differential rotation.

1www.uni-graz.at/igam5www/daily_ RnRs/
The significance of a peak in the periodogram is estimated via a false-alarm probability, FAP (for details see Scargle, 1982; Horne and Baliunas, 1986). For the wavelet power spectra presented in this paper, a confidence level at 99% is applied as significance test. The computation of all the wavelet parameters is performed in the way as described by Torrence and Compo (1998).

3. Results

In Figure 1 the periodograms derived from daily Sunspot Numbers and daily Hα flares subdivided into three different groups regarding their importance class, separately for the northern and the southern hemisphere, are presented. Considering all flares, i.e. importance ≥ 1, significant periodical occurrences of ~27 days for the northern hemisphere and of ~28 days for the southern hemisphere are obtained. These results are in very good agreement to those revealed for Sunspot Numbers. By waiving the low-energetic subflares, some different periods are obtained. For the southern hemisphere flares of importance ≥ 1 show their most prominent peak at ~24 days which is well determined above the 1% FAP level. Similar, but at a higher FAP level of ~50%, for the northern hemisphere flare events of importance ≥ 2 show a ~24-day period, too. However, this period is not found in Sunspot Numbers. The well defined signal of periodical occurrences for the northern/southern hemisphere at ~27/~28 days is successively attenuated considering only higher energetic flares.

In Figure 2 the wavelet analysis of the total number of Hα flare events, i.e. importance ≥ 1, is presented. As it can be seen, the temporal localization of dominant periods given with 99% significance are found to be clearly different for both hemispheres. In general, for the northern hemisphere a higher power is obtained than for the southern (ratio of ~17:10) which is focused around narrow time ranges showing periods near 27 days. For the southern hemisphere a rather diffuse “periodical picture” is shown with broad time ranges of enhanced power enclosing significant periods in the range from ~23–30 days. Significant power in the range of 24 days is revealed for solar cycle 21 about one year after and for cycle 22 shortly after the cycle maximum. A distinct 28-day period for the southern hemisphere is only seen during cycle 22 about one year after the maximum phase. The power localization of major flares (figure not shown), i.e. importance classes
Figure 1: Normalized power spectral density (PSD) for (top to bottom) Sunspot Numbers, total number of Hα flares, Hα flares of importance ≥ 1, and flares of importance ≥ 2. Left panels refer to the northern, right panels to the southern hemisphere. Dashed lines indicate the FAP level of the peaks in the periodograms.
Figure 2: Wavelet power spectra derived from the northern (left panels) and southern (right panels) Hα flare events. Grey-scale coding from white to black represents the square root of power in a linear scale. Dashed and solid vertical lines indicate the solar cycle minima and maxima, respectively. White contour lines denote the 99% confidence level. Dotted lines indicate regions in which edge effects become important due to the finite-length of the time series. *Intercalibration* was not used between the power scales in the plots of the right and the left panel.

≥ 1, is for both hemispheres increasingly focused on the late declining phase considering cycle 21 and around the maximum phase for cycle 22. In the southern hemisphere, a 24-day period is mainly revealed during the maximum and the declining phase of solar cycle 22. The northern hemisphere shows a broad period range of enhanced power including a 24-day period in the declining phase of cycle 21 and during the maximum phase of cycle 22.

4. Discussion and Conclusions

The results of periodical occurrences in the range of $\sim 27 / \sim 28$ days obtained for the northern/southern Hα flares are in good agreement with those of the northern/southern Sunspot Numbers (see also Temmer et al., 2002). The same periods have been found in the photospheric magnetic field, suggesting a strong coupling of these phenomena.
Deviations from these periods are revealed considering only higher-energetic flare events, i.e. waiving subflares, which comprise ~90% of all flare events (see Table I). Out of this, a periodical occurrence rate of ~24 days is found, with higher significance for the southern than for the northern hemisphere. Thus, major flares seem to be not that strongly related to a N-S asymmetry. In agreement with that, Bai (1987) found that hard X-ray flares (mainly major flares) for the time span 1980–1985 show an occurrence rate with a period of ~23.7 days in both hemispheres. A dominant ~23.5-day period is also found in irradiance measurements as well as in the areas especially of young and “active” sunspot groups (Pap, Tobiska and Bouwer, 1990). Thus, the 24-day period is supposed to be a real periodical feature, and the anchoring hypothesis of new-born spots representing deeper and thus faster rotating layers could provide a useful link to the theory of energetic flare events (see, e.g., Balthasar, Schüssler and Wöhl, 1982).

Flares occur preferentially in association with active regions of complex magnetic configuration, such as δ, γδ, and βγδ. Sammis, Tang and Zirin (2000) analyzed 8 years of active region observations with respect to solar flare occurrence, and found that most of the major flares occurred in active regions of βγδ structure. It was pointed out that there is a strong tendency of major flares to be associated with large active regions of a complex magnetic configuration. As it can be inferred from Table I, major flares (i.e. importance ≥ 1) account only for ~10% of the total of events. Therefore, we suggest that the fact that a 24-day period is found in the occurrence of major flares but not in Sunspot Numbers is due to a selection effect towards magnetically complex and large active regions when considering time series of major flare events. In further studies it is planned to test this hypothesis by analyzing time series of occurrences of large and complex active regions, in particular considering βγδ configurations.

Acknowledgements

M.T., A.V. and A.H. gratefully acknowledge the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF grant P15344) and J.R. the Slovak grant agency VEGA (2/3015/23) for supporting this project. Wavelet software was provided by C. Torrence and G. Compo (http://paos.colorado.edu/research/wavelets/).
References

ROTACIJSKA MODULACIJA ZNAČAJKI AKTIVNOSTI SUNCA ZA SJEVERNU I JUŽNU HEMISFERU

M. TEMMER1, A. VERONIG1,2, J. RYBÁK3 i
A. HANSLMEIER1

1Institute for Geophysics, Astrophysics and Meteorology,
University of Graz, Universitätsplatz 5, A-8010 Graz, Austria
2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Astronomical Institute/SAS,
SK-05960 Tatranská Lomnica, Slovak Republic

UDK 523.98-327
Izlaganje sa znanstvenog skupa

Sažetak. Istražuju se fenomeni Sunčeve aktivnosti kao što su H-alfa bljeskovi i pjega s obzirom na njihovo periodično pojavljivanje povezano sa Sunčevom rotacijom. Analiza se provodi zasebno za sjevernu i južnu hemisferu. Pojava bljeskova se razmatra s obzirom na različite klase važnosti i rezultati se uspoređuju s istaknutim periodima dobivenim iz brojeva pjege. Ustanovljene su značajne asimetrije između aktivnosti na sjevernoj i južnoj hemisferi za brojeve pjega kao i za pojavljivanje bljeskova. Razlike između broja pjeta i bljeskova izraženije su kada se razmatraju samo bljeskovi velikih energija. Pronađen je 24-dnevni period u obje hemisfere za velike bljeskove. Takav period nije ustanovljen za brojeve njega.

Ključne riječi: Sunčevi bljeskovi - oslobađanje energije - Sunčev ciklus aktivnosti

66