Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

P. F. Weck, A. Schweitzer, P. C. Stancil, & P. H. Hauschildt
Dept. Physics & Astronomy; Ctr. for Simulative Physics, Univ. Georgia, Athens, GA

K. Kirby
ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

Y. Yamaguchi & W. D. Allen
Ctr. for Computational Quantum Chem.; Dept. Chemistry, Univ. Georgia, Athens, GA

Abstract

The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab initio and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the $B' 2\Sigma^+ \leftrightarrow X 2\Sigma^+$ and $A 3\Pi \leftrightarrow X 2\Sigma^+$ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

1. Introduction

The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). In fact, sophisticated modeling programs, such as the PHOENIX code (Hauschildt & Baron, 1999), require high quality opacity data in order to produce synthetic spectra and predict physical parameters (surface chemical composition, effective temperature, etc.). Typically, atmosphere models include molecular bands with hundreds of millions of spectral lines, mostly derived from molecular band models. Moreover, few models consider the effect of molecular photodissociation processes which may play a role in the opacity at visible and UV wavelengths. In this work, we report our progress on the calculations of line and continuum opacities resulting from the presence of three molecules, MgH (Skory et al. 2002; Weck, Stancil, & Kirby 2002a; Weck et al. 2002b,c), LiCl and FeH.

2. Magnesium hydride

Accurate SDTCI potential-energy surfaces calculated by Saxon, Kirby & Liu (1978) have been used for the $B' 2\Sigma^+$, $A 3\Pi$ and $X 2\Sigma^+$ electronic states of 24MgH, together with their connecting transition dipole moments, over the range $R = 2.2 \text{ a}_0$ to 9.5 a_0. For both the short- and long-range interactions, they have been extrapolated by an exponential fit. In Figure 1, the product of the rotational oscillator strengths $f_{\nu',\nu}$ and the degeneracy factor $g_{\nu',\nu}$ as a function of the absorbed photon energy is shown for the A-X bound-bound transitions. Our calculated spectrum appears to be more compact than the results of Kurucz (1993) obtained by extrapolation. In particular, the differences observed on the wavelength range
19000 – 20500 cm\(^{-1}\) may have significant consequences for high temperature studies (e.g., non-equilibrium chemistry models of M and L dwarf atmospheres). For the \(B' - X\) bound-bound transitions, a good qualitative and quantitative agreement is observed with the results of Kurucz (1993).

The LTE rovibrationally-resolved photodissociation cross sections \(\sigma_{v',J'}\) for the A-X transitions are presented in Figure 2 as functions of wavelength and temperature (Boltzmann distribution). Rotational cross sections are characterized by shape resonances arising from rotational predissociation of quasi-bound levels of the \(A^{2}\Pi\) electronic state near threshold. The cross section from the ground RV level, \(v'' = 0, J'' = 0\), is also represented for photodissociation through the \(B'-X\) transitions.

![Graphs](image)

Fig. 1.— Product of the rotational oscillator strengths \(f_{v',J',v'',J''}\) and the degeneracy factor \(g_{J',J''}\) as a function of the absorbed photon energy. Left: \(A \leftrightarrow X\) transitions; right: \(B' \leftrightarrow X\) transitions.

![Graphs](image)

Fig. 2.— LTE photodissociation cross sections \(\sigma_{v'',J''}\) as functions of wavelength and temperature (Boltzmann distribution). Left: \(A \leftrightarrow X\) transitions; right: \(B' \leftrightarrow X\) transitions.
3. Lithium Chloride and Iron Hydride

From our \textit{ab initio} SDCI calculations using the \textsc{Alchemy} code (Mc Lean \textit{et al.} 1991), we have obtained five $^1\Sigma$ and five $^1\Pi$ electronic states, thus giving four additional electronic states than that calculated with a valence-bond method by Zeiri \& Balint-Kurti (1983). Calculations to obtain the energy surfaces over a large internuclear distance range are underway. Calculations have been performed using the coupled cluster method (CCSD(T)) near the equilibrium distance r_e of the $X^4\Delta$ electronic state of FeH. Our results are presented in Table 1 together with the previous values obtained by Tanaka, Sekiya, \& Yoshimine (2001) and by Langhoff \& Bauschlicher (1990).

Table 1. Energy* values near the equilibrium distance† of $X^4\Delta$ of FeH

<table>
<thead>
<tr>
<th>States</th>
<th>Present work</th>
<th>\textsc{Langhoff et al.}</th>
<th>\textsc{Tanaka et al.}</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^4\Delta$..</td>
<td>0 2.964</td>
<td>0 3.001</td>
<td>0 3.016</td>
<td>0 3.002</td>
</tr>
<tr>
<td>$A^4\Pi$....</td>
<td>1309 2.917</td>
<td>1200 2.934</td>
<td>2010 2.933</td>
<td>930 3...</td>
</tr>
<tr>
<td>$a^6\Delta$..</td>
<td>372 3.199</td>
<td>1290 3.199</td>
<td>2080 3.235</td>
<td>1970 3.34</td>
</tr>
<tr>
<td>$b^4\Pi$....</td>
<td>2183 3.181</td>
<td>3244 3.197</td>
<td>3310 3.207</td>
<td>4010 3...</td>
</tr>
<tr>
<td>$c^6\Sigma^+$.</td>
<td>4249 3.203</td>
<td>3694 3.201</td>
<td>4600 3.190</td>
<td>4870 3...</td>
</tr>
</tbody>
</table>

*Adiabatic term energy in cm$^{-1}$

†Equilibrium distance in a_0

4. Conclusion

Lines and photodissociation cross sections have been calculated for MgH using a full theoretical treatment, improving the previous extrapolated results. Progress has been made in the determination of \textit{ab initio} potential energy surfaces for LiCl and FeH, in order to calculate for the first time complete absorption spectra of both molecules.

Acknowledgments

This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582. Some of the calculations were performed on the IBM SP2 of the UGA EITS.

REFERENCES