MORETON WAVES AND THEIR RELATION WITH EIT WAVES

Alexander Warmuth1, Bojan Vršnak2, Henry Aurass3, and Arnold Hanslmeier1

1IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria
2Hvar Observatory, Faculty of Geodesy, Kačičeva 26, HR-10000 Zagreb, Croatia
3Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

ABSTRACT

Moreton waves, observed in Hα, and the recently discovered coronal transients known as “EIT waves” have remained fairly poorly understood phenomena. In particular, the issues of their mutual association and of the nature of their driver are not resolved. We discuss seven Moreton waves observed in Hα and derive their basic characteristics. Four of these events were observed simultaneously in Hα and EUV. A deceleration of the disturbances is found in all cases. In the 2 May 1998 event, the cospatiality of Moreton and EIT wave fronts is established and a detailed analysis of the evolution of the Hα wave, its kinematics and perturbation profile is carried out. The results - deceleration, broadening, and decrease of intensity of the profiles - favor the fast-mode shock (“blast wave”) scenario over the CME-associated magnetic field evolution hypothesis.

Key words: shock waves; flares; corona; chromosphere.

1. INTRODUCTION

The study of the Moreton wave phenomenon (Moreton & Ramsey 1960), a propagating arc-shaped front observed in Hα, has received a new impetus by the recent discovery of the so-called “EIT waves” (Thompson et al. 1998), globally propagating coronal disturbances typically appearing as bright rims observed with the EUV Imaging Telescope (EIT) aboard SOHO. Moreton waves have been suspected to represent the chromospheric signature of coronal shocks (Uchida 1968), so the possibility that EIT waves are the coronal counterpart to the Moreton phenomenon suggests a careful analysis of the association between these two phenomena. In particular, the main question to be answered remains the one on the driver of these disturbances.

Currently, there are several competing models of the driver. In the “blast-wave” scenario (Steinolfson et al. 1978) a flare-produced initial pressure pulse propagates through the corona as a fast-mode MHD shock (Vršnak & Lulić 2000), while the shock is observed as the bright fronts seen in EIT and as metric type II bursts (Uchida 1974). Conversely, the Moreton waves seen in Hα represent the chromospheric “skirts” of the dome-shaped coronal shock front (Uchida et al. 1973). An alternative scenario is the “piston mechanism”, in which a CME acts as a piston and generates a driven shock (see Cliver et al. 1999 and references therein). Delannée & Aulanier (1999) have recently proposed a completely different interpretation of the EIT waves, which they attribute not to a shock wave at all, but rather to the opening of magnetic field lines associated with a CME.

Neither of these models could be proved yet due to a lack of data. In particular, the association between EUV EIT waves and Hα Moreton waves is still not completely resolved. Statistical surveys of Moreton (Smith & Harvey 1971) and EIT waves (Klassen et al. 2000) point out some discrepancies between the two phenomena, in particular, on the average the former propagate 2-3 times faster than the latter, yet if they are signatures of a shock, they should be relatively cospatial, and indeed Thompson et al. (2000) report such a case, but due to insufficient data they were not able to determine how closely the two phenomena overlap. Thus, doubts remain whether Hα and EIT waves are indeed caused by the same disturbance. Since the EIT waves show a wide variety of morphological patterns, there might even be distinct classes that are caused by different physical processes.

We investigate the kinematics of seven Moreton waves, labeled E1 through E7 (see Table 1), observed in Hα by Kanzelhöhe Solar Observatory (KSO: E1, E2, E6) and Big Bear Solar Observatory (BBSO: E3, E5, E7). In the four cases where simultaneous EIT observations were available (E1, E2, E6, E7), we examine the temporal and spatial relation between the wave fronts seen in EIT and Hα. E1 and E2 have been analyzed in detail (see Warmuth et al. 2001), whereas the other events are subject to a current study. However, the preliminary results fully back the conclusions drawn from E1 and E2.
<table>
<thead>
<tr>
<th>Event</th>
<th>Class</th>
<th>Location</th>
<th>Start-Max (UT)</th>
<th>initial Hα wave speed (km s⁻¹)</th>
<th>EIT wave speed (km s⁻¹)</th>
<th>CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: 03 Nov 1997</td>
<td>1B/M1.4</td>
<td>S20W15</td>
<td>09:03 - 09:10</td>
<td>≈1000</td>
<td>230</td>
<td>?</td>
</tr>
<tr>
<td>E4: 19 Aug 1998</td>
<td>1F/X3.9</td>
<td>N32E57</td>
<td>21:35 - 21:45</td>
<td>760</td>
<td>no data</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 1. The seven Moreton events, their associated flares and CMEs. All flares are of impulsive nature and associated with metric type II radio bursts. No EIT or LASCO data is available for E3-E5, hence the data gaps. In E4, a CME was observed by the Mark IV K-coronameter at Mauna Loa Solar Observatory. The initial Hα wave speeds were measured using the first two observed wave fronts. Due to the low image cadence of EIT, only two wave fronts could be detected in the EUV in each events, and the EIT speed is derived from these pairs.

Figure 1. Hα (top) and EIT images (bottom) for the four Moreton events that had simultaneous Hα and EIT data coverage (E1, E2, E6, and E7). Overplotted are the visually determined wave fronts and parts of great circles along which the distances from the supposed origin of the disturbance were measured (only the two paths limiting the sector in which the measurements were carried out are shown). The images presented are the earliest frames that show wave features. The Hα images for E1, E2 and E6 are from KSO, the image for E7 is from BBSO. Each image is 23’ across. Solar north is up, west is right. Times are given in UT.
2. OBSERVATIONS

Hα full-disks images were provided by KSO for E1 (35 mm film, temporal cadence: 4 min), E2 and E6 (1K × 1K camera, cadence: 10-30 min, spatial resolution: 2.6 pixel−1). All flares were impulsive and associated with metric type II radio bursts. The CME association is not as clear-cut – while CMEs were observed in four cases, only very weak signatures were detected in E1 and no data is available for E3 and E5.

The onset times of the flare waves were fixed by inspecting radio data (using the time of the impulsive emission in the decimetric to metric range). The location of the source of the disturbances was determined taking into account the shape of the wave fronts and the evolution of the Hα flare. In general, the disturbances seem to emanate from the edge of the flare which was located in the periphery of the active region.

The location of the wave fronts was determined visually using difference images. The distances of the fronts from the source – r(t) – were measured along great circles on a sphere of one solar radius. Fig. 1 shows large-scale Hα and EIT images of the four events with EUV data coverage, along with the overplotted locations of the fronts and the sectors in which we measured r(t) along several paths.

The measurement of r(t) reveals that all seven Moreton waves clearly show deceleration, with initial speeds of 750-1300 km s−1 and final speeds (before the Hα fronts vanish) of 200-650 km s−1. In E2, we were able to determine the intensity profile of the Hα perturbation and to follow its evolution. Profiles were obtained for a large number of directions (so that each pixel within the measured sector was sampled at least once) and then averaged laterally over the complete sector angle. From these profiles we deduced the maximum intensity I(t) and the locations of the leading edge rL(t), the intensity maximum rM(t), and the trailing edge rT(t), defining the perturbation width w(t) = rT(t)−rL(t). The results show deceleration, profile broadening, and intensity decrease (Fig. 2).

Such a behavior is characteristic of the shock waves that are formed from a large amplitude simple wave (Landau & Lifshitz 1987). As the perturbation propagates the profile broadens because the leading (shocked) edge moves faster than the trailing one. The frontal edge propagates at the velocity vF = MS, whereas the trailing one propagates at vT = MS. Let us note that the measured rL(t) reveals deceleration rather than constant velocity (Fig. 2) implying that the real trailing edge was not in fact resolved.

Four events were observed simultaneously in Hα and EUV (E1, E2, E6 and E7). The velocities of the EIT waves were in the range of 230-400 km s−1. As an example, the measured values r(t) using Hα and EIT fronts are shown in Fig. 3 for E2. In this event, it is evident that the EIT and Hα disturbances are closely associated.

Figure 2. Top: Propagation of the Hα disturbance in E2 as inferred from its intensity profile. Note that the outermost parts of the visually determined wave fronts (dashed; taken from Fig. 1) are located only slightly behind the leading edge of the profile. Bottom left: velocities obtained using all neighboring Hα front pairs. Bottom right: normalized maximum intensity and width of the profile.

Figure 3. Propagation of the Hα and the EIT wave fronts in E2. Power law (bold) and 2nd degree polynomial (thin) fits are shown. Upper Inset: an enlarged part of the graph shows the close association of the Hα and EIT fronts; error bars are included for the EIT times. Lower inset: crosses are velocities using all neighboring Hα front pairs, the circle is the speed obtained using the two EIT fronts. Bold is a fit through the Hα v(t) points, thin is the derivative of r(t) shown in the main graph.
since they lie on the same kinematical curve. Applying 2nd degree polynomial least-squares fits to the measured \(\dot{r}(t) \) for all four events yields decelerations on the order of \(\ddot{a} \approx 100 \text{ m s}^{-2} \). In E2, the observation of nearly cospatial and morphologically similar fronts in \(\text{H}\alpha \) and EUV provides further evidence for the close association of these wave phenomena. Furthermore the wave fronts were deformed by two low-lying obstacles, which implies propagation of information through a medium and therefore supports the interpretation of the fronts as waves or shocks.

Usually, the speed of Moreton and EIT waves is treated as constant. The presented analysis shows that this can be misleading, causing an artificial discrepancy between \(\text{H}\alpha \) and EUV signatures (see Klassen et al. 2000). If the decelerating motion is a general property of these disturbances their EIT signatures must on average have lower mean velocities than their \(\text{H}\alpha \) counterparts since the former are usually traceable to much larger distances. The discrepancy is additionally increased by the low cadence of the EIT observations which allows only for a poor coverage of fast events.

Assuming a magnetosonic speed of a few hundred \(\text{km s}^{-1} \) in the low corona outside of active regions (Mann et al. 1999), the Mach number at the beginning of the observable propagation of the Moreton waves can be estimated to roughly \(M > 3 \). The velocities at large distances (200–400 \(\text{km s}^{-1} \); corresponding to the EIT wave speeds) are fairly consistent with the magnetosonic speed. Therefore, the Moreton wave represents a shock, whereas the EIT wave, typically observed farther out, may be regarded as a wave travelling at the magnetosonic speed. In contrast to the EUV, the \(\text{H}\alpha \) disturbance is visible only in earlier stages when the Mach number is still relatively high, since it is more difficult to perturb the inert chromosphere. This can explain the higher rate of occurrence of EIT waves compared to Moreton events, since weak disturbances, which are probably initiated more frequently, will not show up in \(\text{H}\alpha \). The mentioned “velocity discrepancy” is additionally increased by this effect.

4. CONCLUSION

The presented observations reveal the close association of the Moreton and EIT waves (at least for these kinds of events; there might be EIT “waves” produced by a totally different mechanism which are not associated with \(\text{H}\alpha \) waves). The deceleration caused by a decreasing shock amplitude can straightforwardly explain the discrepancy between the average Moreton and EIT wave speeds. This fast-mode shock wave scenario is favored over the magnetic field evolution hypothesis of Delannée & Aulanier (1999) since: (1) the deceleration of the disturbance and its intensity profile evolution (broadening and intensity decrease) is consistent with the blast wave scenario; (2) the wave fronts are centered on the flaring site, or more precisely on its edge; (3) in E2, the Moreton wave front was deformed by low-lying obstacles implying a propagation of information through a medium, which is characteristic of a wave.

While we cannot completely rule out the CME-induced piston mechanism at the current stage of analysis, we believe that the blast-wave scenario provides a more convincing explanation. However, the blast-type shock could be launched by ejecta of a smaller scale (e.g. sprays or the ejecta observed with \(\text{Yohkoh} \ SXT \)) instead of an initial pressure pulse (Vršnak & Lulić 2000). Depending on their kinematics, they could either generate a perturbation which then steepens into a shock, or there could be a short phase of a driven shock, after which the shock propagates freely.

ACKNOWLEDGMENTS

Data is used with permission of BBSO, New Jersey Institute of Technology. We thank the BBSO staff for their kind support, and B. J. Thompson for the provision of corrected EIT times. A. W. and A. H. acknowledge the support of the Austrian FWF Project P13653-PHY.

REFERENCES

Uchida, Y. 1968, Solar Phys., 4, 30