La tasa de decaimiento del ciclo solar como indicador de actividad

A.P. Buccino¹ & P.J.D. Mauas¹,²

¹ Instituto de Astronomía y Física del Espacio, Argentina
² Miembro de la carrera de Investigador Científico, CONICET, Argentina

ABSTRACT

The length of the solar cycle has been linked to solar forcing of global climate. Usually, cycle length is defined as the time difference between consecutive sunspot minima. However, sunspot minima is determined both by the diminishing number of spots of the old cycle and by the increasing number of spots of the new one. Therefore, the date of the minimum depends on the properties of both cycles, and is generally ill defined. Furthermore, changes in solar activity should precede climatic changes. On the other hand, it has been suggested that the length of the cycle is related to changes in the Sun’s convective energy transport, through the decay rate of individual sunspots. Here, using the concept of extended activity cycle, we define an activity index based on the decay rate of the cycle, and study its correlation with other indexes.

RESUMEN

En trabajos anteriores se ha tratado de vincular la longitud del ciclo solar con el clima terrestre. Usualmente, la longitud del ciclo se define como la diferencia temporal entre dos mínimos consecutivos. Sin embargo, los mínimos de manchas se determinan tanto por disminución de las manchas del viejo ciclo, como por el aumento del número de manchas del ciclo entrante. Por ende, la fecha en que ocurriría el mínimo del ciclo depende de las propiedades de ambos, y está, generalmente, mal determinado. Más aún, los cambios en la actividad solar precederían a los cambios climáticos. Por otro lado, se sugiere que la longitud del ciclo está relacionada con cambios en el transporte de energía convectiva a través de la tasa de decaimiento de las manchas individuales. En nuestro trabajo, usando el concepto extendido de actividad del ciclo, definimos un índice de actividad basado en la tasa de decaimiento del mismo y estudiamos su correlación con otros índices.

Observaciones del disco solar y de una protuberancia quiescente en radiación ultravioleta

D. Cirigliano¹, J-C. Vial² & M. Rovira¹

¹ IAFE, Bs. As., Argentina
² Institut d’Astrophysique Spatiale, Francia

RESUMEN

Observaciones del disco solar y de una protuberancia quiescente en el rango de longitudes
de onda ultravioleta fueron obtenidas con el instrumento CDS (Coronal Diagnostic Spectrograph) y SUMER (Solar Ultraviolet Measurements of emitted radiation) a bordo de la sonda SOHO. El propósito es investigar las velocidades macroscópicas de varias especies metálicas que se observan tanto en el disco solar como en el plasma de las protuberancias. Para calcular las velocidades del disco solar aplicamos una técnica mixta para modelar la distribución de estructuras en UV en el Sol quieto. Las velocidades macroscópicas en las protuberancias se calcularon a partir de los corrimientos Doppler en cada línea espectral y luego se tomaron las del disco solar como referencia. Obtuvimos valores absolutos para las velocidades macroscópicas entre 5 y 40 km/seg. También detectamos comportamientos diferentes en las velocidades de las protuberancias en el centro con respecto a los bordes.

Estudio de eventos dinámicos en ondas milimétricas

G. Cristiání, G. Martínez, J.P. Raulin, G. Giménez de Castro & M. Rovira

1 IAFE, Instituto de Astronomía y Física del Espacio, CC67, Suc 28, 1428, Bs.As., Argentina
2 CRAAM, Universidad Presbiteriana Mackenzie, Rua de Consolação 896, 01302-000, S. Paulo, SP, Brasil

RESUMEN

El estudio de la actividad solar con el telescopio para ondas submilimétricas (SST), nos permite, por vez primera, trabajar con una resolución temporal de milisegundos. Este hecho ha permitido observar emisión nunca antes comprobada, pulsos o flashes extremadamente rápidos provenientes de las regiones activas, los cuales parecen preanunciar fulguraciones en dichas regiones. Se muestra, como ejemplo, una fulguración observada con el telescopio HASTA en Hα, y los pulsos rápidos que la preceden observados con el SST. Para cuantificar la influencia de la atmósfera terrestre en los datos registrados, se está estudiando la variabilidad temporal de las opacidades a las frecuencias de trabajo (212 y 405 Ghz), es decir los rangos de tiempo para los cuales la opacidad puede variar apreciablemente. Con este fin se calcula la eficiencia de cada canal multiplicada por la temperatura del Sol a estas frecuencias (estas son conocidas con una incertez del 20 %). Se muestran los resultados obtenidos para cada canal, en donde se grafica este producto como función de la opacidad.

Modelo “Shallow Water” de dinamo solar

R.R. Lillo, P.D. Mininni & D.O. Gómez

1 Instituto de Astronomía y Física del Espacio (CONICET), Argentina
2 Departamento de Física (UBA), Argentina

ABSTRACT

Magnetic fields in stars are believed to be generated by the dynamo effect and are closely