TWO DIMENSIONAL SPECTRAL TIME SERIES

A. HANSLMEIER¹, A. KUČERA², J. RYBÁK² and H. WÖHL³

¹ Institut für Geophysik, Astrophysik und Meteorologie
Universität Graz, Austria

² Astronomical Institute of the Slovak Academy of Sciences
SK-05960 Tatranská Lomnica, Slovakia

³ Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6
D-79104 Freiburg, Germany

UDC 523.942.3-355
Conference paper
(Received September 11, 2000; accepted November 15, 2000)

Abstract. We analyze two dimensional time series of solar photospheric spectrograms in order to study the dynamics of solar fine structures and their evolution. The two dimensional images were obtained by scanning over the photosphere. Spectrographic data of this type include a much higher information than ordinary images.

Key words: sun - photosphere - 2–D spectral scans

1. Introduction

The solar photosphere is dominated by convective overshooting motions. The study of these fine structures requires excellent seeing conditions since the elements are \(\leq 1'' \) size. In the low photosphere the convection dominates whereas in the higher photosphere the influence of oscillations is dominant. This was studied by many authors, among them e.g. Leighton et al. (1962) or Canfield and Mehltretter (1973) or Hanslmeier et al. (1990, 1994), Kučera et al. (1995). A comparison between previous observational results and theoretical 2-d simulations can be found in Gadun et al. (2000).
Why is it so interesting to study the dynamics of the photosphere? There are several reasons for that: first the photosphere is the deepest layer that is directly visible and hence constitutes a boundary layer for solar models. Second it is well known that in these layers turbulent motions are agitated which are responsible for the heating of the above lying chromosphere and corona. The questions however are, where are these motions located and how is the disturbance propagating upwards.

The best way of studying a dynamic phenomenon is of course using time series. Photospheric spectrograms, taken in spectral ranges with lines of different formation heights provide a tool for studying the dynamics in different layers of the photosphere.

2. Data

The data were taken with the 70 cm VTT at the Observatorio del Teide at Izana, Tenerife. A more detailed description of this telescope can be found in Schröter et al. (1985). We obtained during an observing campaign in 1999 two dimensional spectral scans, where the space interval $\delta x = 0.4''$ and the total number of scans was 50. In total an area of $20''$ was scanned. The time step between two successive images was $2.5\,\text{s}$. Thus one 2-d scan lasted for slightly more than 2 minutes. The spectrograms contained the two $Fe I$ lines:

- $Fe I$ at 630.1508 nm and $W_\lambda = 127\,\text{mÅ}$, $EP = 816\,\text{eV}$ and $g_{eff} = 1.6$.
- $Fe I$ at 630.2499 nm and $W_\lambda = 83\,\text{mÅ}$, $EP = 816\,\text{eV}$ and $g_{eff} = 2.5$.

From these data the following spectral line parameters were calculated in the usual way:

- continuum intensity
- line center residual intensity
- line center velocity
- equivalent width
8 images each separated by 130 s were analyzed to study the evolution of the structures.

3. Results

In Figure 1 we show a slit jaw image which was not corrected for flat field and seeing.

In Figure 2 we can follow the time evolution of the continuum intensity and line center residual intensity over 7 different time steps.

In Figure 3 we can follow the time evolution of the line center velocity fluctuations and the full width at half maximum variations over 7 different time steps.

We calculated the correlation coefficients for the individual 2-D images of the time series. This was done in two ways: a) we calculated
Figure 2: Variation of continuum intensity (left) and line center residual intensity (right) as a function of time (line I); the scale is from 0 to 255 for each parameter.
Figure 3: Variation of line center velocity fluctuations (left) and full width at half maximum variations (right) as a function of time (line I); the scale is from 0 to 255 for each parameter.
the correlation coefficients for subsequent images and b) the decay of the correlation was calculated comparing the correlations of the images \(n > 1 \) with image 1. This was done for all four spectral line parameters. The results are given in Figure 4, the correlation between subsequent images remains relatively stable for the continuum intensity (correlation coefficient \(\sim 0.6 \)) indicating a slow evolution in the field. The correlation between the first image and the other images falls down in the case for continuum intensity and full width at half maximum due to the evolution of granular/intergranular structures. The results are different for the residual intensity. For both types of correlations the values of correlation coefficients are low (around 0.3) and show no clear trend.

This may be explained by enhanced turbulence in these layers. Also the line center velocity shows low values for the correlations which are
negative with a tendency to increase. This could be attributed to the influence of larger scale motions.

Acknowledgements

A. H. thanks the Austrian Academy of Sciences for financing the exchange of scientists. A. H. thanks the 'Austrian Fonds zur Förderung der wissenschaftlichen Forschung' for supporting these investigations. A. K and J. R. acknowledge the grant VEGA 2/7229/20 and thank the Austrian and Slovak Academies of Sciences.

References

A. HANSLMEIER ET AL.: 2D SPECTRAL TIME SERIES

DVODIMENZIONALNI VREMENSKI NIZOVI SPEKTROGRAMA

A. HANSLMEIER¹, A. KUČERA², J. RYBÁK² i H. WÖHL³

¹Institut für Geophysik, Astrophysik und Meteorologie
Universität Graz, Austria

²Astronomical Institute of the Slovak Academy of Sciences
SK-05960 Tatranská Lomnica, Slovakia

³Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6
D-79104 Freiburg, Germany

UDK 523.942.3-355
Izlaganje sa znanstvenog skupa
(Primljeno 11. rujna 2000.; prihvaćeno 15. studenog 2000.)

Ključne riječi: Sunce - fotosfera - 2-D spektrogrami