Outer Wind Evolution of Instability-Generated Clumped Structure in Hot-Star Winds

S. P. Owocki1, M. C. Runacres2, and D. H. Cohen1

1Bartol Research Institute, Univ. of Delaware, Newark, DE 19350 USA
2Royal Observatory, Brussels, Belgium

Abstract.

The line-driven instability of hot-star winds is understood to lead to extensive clumped structure in the near-star acceleration portion of the wind. In this paper, we summarize our recent efforts to simulate the evolution of this structure far from the stellar surface. We first present direct simulations of structure to about $r = 40R_\ast$, and then model the further hydrodynamical evolution to $160 R_\ast$ through a quasi-periodic approach. Finally we outline a novel, pseudo-planar method designed to simulate the evolution of such structure to very large radial distances of $1000R_\ast$ or more.

1. Introduction

The line-driving of hot-star winds is understood to be highly unstable (see, e.g. review by Feldmeier, these proceedings, and references therein), resulting in a highly structured flow with a non-monotonic velocity field, strong compressive shocks, and extensive clumping in density. The implications of this structure for interpreting observational diagnostics formed at distances ranging from near the surface (e.g. H\alpha emission) to quite large radii (i.e. $r > 100R_\ast$ for radio emission) depends on how such structure evolves and decays. But with only a few exceptions (e.g. Feldmeier et al. 1997), most previous simulation models have focussed on only the formation of structure in the wind acceleration region near the star. In this paper, we summarize recent efforts to study the outer evolution of wind structure through various extensions to previous models.

2. Direct Simulation to Moderate Distances of a few 10 R_\ast

A key challenge in direct simulations of the line-driven instability is the computation of the line-force, which requires numerical evaluation of nonlocal escape integrals, with a spatial grid fine enough to adequately resolve the strongest instability growth at scales near and below the Sobolev length, $L \equiv v_{th}/(dv/dr) \sim 0.005R_\ast$. So far most simulations have been restricted to 1D radial outflow (see, however, Owocki 1998), using the relatively simple “Smooth Source Function” (SSF) approach to computing the line-force (Owocki and Puls 1996, 1999), and focusing mostly on the initial development of structure in the inner wind, i.e.
Figure 1. Snapshot of the velocity (upper panels) and density (lower panels) structure in self-excited instability model, plotted vs. radius (left) and vs. mass (right).

For a fixed, uniform grid resolution, the overall computational cost scales as $N_r^2 \sim R_{\text{max}}^2$, reflecting the longer evolution time needed to relax a larger scale model. To avoid this quadratic scaling for extending simulations to larger radii, a common approach (e.g. Feldmeier et al. 1997) is to set radial zone sizes to increase linearly outward, $dr \sim r$. Since the total number of zones then increases only logarithmically with radius, the overall computational cost scales almost linearly with radial extent, i.e. as $R_{\text{max}} \log(R_{\text{max}})$. The tradeoff is, of course, severe reduction in spatial resolution for the outer flow structure.

As a compromise approach here, we relax an initial direct simulation model using $N_r = 3000$ radial grid points, with highest resolution ($dr/r = 0.002$) near the strongly stratified wind base, then increasing as $dr \sim r$ for $r \leq 10R_*$ and $r \geq 31R_*$, but kept fixed at $dr = 0.02R_*$ for the interval in-between. Figure 1 shows a snapshot of the velocity and density structure at an instant about twice a characteristic flow time $R_{\text{max}}/v_\infty \sim 250$ ksec after the initial condition, which
Figure 2. Radial evolution of key statistical properties of the flow structure show in figure 1, including the rms variations in (a) velocity and (b) log(density); (c) the velocity-density correlation coefficient; and (d) the root of the clumping factor, \(C_f \equiv \langle \rho^2 \rangle / \langle \rho \rangle^2 \).

was set by the steady-state CAK model (Castor, Abbott, and Klein 1975). In addition to variations vs. the standard Eulerian height, the plots vs. Lagrangian mass coordinate (Owocki and Puls 1999) show how much material has a given velocity or density. Since we introduce no explicit base perturbations, the extensive flow structure is entirely “self-excited” by back-scattering from wind flow structure to provide the initial seeds to instabilities near the wind base.

Figure 2 plots the radial variation of key statistical properties of this flow structure. The rms velocity variation is highly supersonic, some 300 km/s in the inner wind, decaying slowly to about 100 km/s at the outer radius \(R_{max} \approx 42R_\odot \). The associated density shows typically a factor 50 variation. The velocity and density begin with a strong anti-correlation, but the mutual interaction of structure quickly leads to no correlation. Finally, the clumping factor characterizes the enhancement expected from density-squared diagnostics, implying roughly
a factor 3-4 overestimate in mass loss rate for emission diagnostics originating over the broad range from 1.5-30 R_\ast.

3. **Quasi-Periodic Extension to Distances of Order 100 R_\ast**

The inverse-square radial decline in radiative flux suggests that radiative force should have limited dynamical effect in the outer wind. In following the distant evolution of flow structure, it thus seems reasonable to convert to a pure gas dynamical simulation that simply omits the costly calculation of the line-driving force. In this approach, the outer boundary variations in flow variables at R_{max} of a full, line-driven instability simulation provide the inflow boundary conditions to the separate, pure-gas-dynamical simulation, for which the overall lower computational cost allows use of a fixed resolution grid extending to a larger outer radius, R_{out}. Moreover, to avoid having to run the instability simulation for the extended time needed for structure to reach this outer radius, we may simply repeat the structure over a fixed “quasi-period” that is much longer than the short time-scale variations associated with the structure we wish to follow.
As an example, the output from the above simulation model at a maximum radius \(R_{\text{max}} \approx 42R_* \) is stored over a long quasi-period \(\Delta t = 2^{16} \) sec, computed in \(2^{14} \) uniform time steps of \(dt = 4 \) sec. This is then used as input for a pure hydrodynamical simulation over the radial range \(r = 42 - 160R_* \), and repeated for 10 quasi-periods, long enough to allow structure to reach the outer radius \(R_{\text{out}} = 160R_* \). Figure 3 shows the resulting radial evolution of the density variation, together with the outward decline in the overall clumping factor.

4. Pseudo-Planar Approach for Very Extended Evolution to 1000 \(R_* \) and Beyond

To extend such simulation calculations to even larger radii, we have been experimenting with a new “pseudo-planar” approach. Starting at some radius \(R \), we rewrite the spatial coordinate and flow speed in a frame moving with some fixed velocity \(V_0 \),

\[
x \equiv r - R - V_0 t ; \quad w \equiv v - V_0
\]

Then by defining flow variables that scale out the spherical wind expansion,

\[
\tilde{\rho} \equiv \rho(r/R)^2 ; \quad \tilde{P} \equiv P(r/R)^2 ; \quad \tilde{E} \equiv E(r/R)^2,
\]

we can write the equations for conservation of mass, momentum, and energy in the “pseudo-planar” form,

\[
\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial (\tilde{\rho}w)}{\partial x} = 0
\]

\[
\frac{\partial (\tilde{\rho}w)}{\partial t} + \frac{\partial (\tilde{\rho}w^2)}{\partial x} = - \frac{\partial \tilde{P}}{\partial x} + \frac{2\tilde{P}}{r}
\]

\[
\frac{\partial \tilde{E}}{\partial t} + \frac{\partial (\tilde{E}w)}{\partial x} = - \tilde{P} \frac{\partial w}{\partial x} - \frac{2\tilde{P}(V_0 + w)}{r}
\]

wherein the two terms proportional to \(1/r \) represent the only explicit sphericity corrections to the otherwise planar form. This provides a very efficient way to extend simulation of any quasi-periodic structure produced in an explicit spherical model. So far, we have only used the approach in experimental test cases, such as the periodic Sod shock tube case illustrated in figure 4. Note how the persistent reflection allows regeneration and long-term retention of flow structure.

5. Conclusions and Future Work

The instability simulations here suggest that strong fluctuations in velocity and pressure tend to dissipate by mutual shock interaction on scales of several times \(10R_* \). In the resulting nearly isobaric, constant speed flow, the persistance of a strong density contrast thus requires a countervailing temperature contrast. Our plans for future work are to apply this pseudo-planar approach toward the distant evolution of wind structure, including also an explicit treatment of radiative heating and cooling terms in the energy equation. The eventual goal is to understand the effect of instability-generated structure on key observational

© Astronomical Society of the Pacific • Provided by the NASA Astrophysics Data System
Scaled Density

Figure 4. Application of the pseudo-planar formalism to follow the adiabatic evolution of an periodic density pulse in a spherical outflow. The total evolution time is some 4 months, corresponding to a flow-distance of some 2000 R_\ast.

diagnostics, like the X-ray emission that originates from hot-gas at a radial distance of order $10R_\ast$, as well as mass-loss rates inferred from free-free radio emission that originates at distances of order $100R_\ast$.

Acknowledgments. We thank A. Feldmeier and J. Puls for many stimulating discussions. The computations presented here were carried out using computer time allocations at the San Diego Supercomputer Center.

References

Discussion

S. Marchenko: It is surprising to see the decline in the rms of velocity at large distances. How could you coincide it with large, up to 1000 km/s, velocity variations observed in the resonance UV profiles formed at, typically, \(~50R_\star\) and above?

S. Owocki: Without a driving source, such large velocity variations tend to decay quickly after a few shock collisions, because shocks are inherently very dissipative. To get velocity variations to survive to large distances (i.e. to where radiative driving no longer can generate them), one possibility is to have them separately by a relatively large time, so that they take a large time to catch up each other and begin shock dissipation.

As I understand, the observations you refer to are for a Wolf-Rayet wind. For this case the driving of the wind is more complicated, and may not have a strong line-driven instability.

A. Feldmeier: You mention pressure equilibrium between phases at different temperatures and densities, where this equilibrium may persist for long times of months. But due to the different densities you possibly should include also dissolution of the separation surface on a short Rayleigh-Taylor instability time scale.

S. Owocki: Yes, you are right. To keep such structure from dissipating, you must stabilize against any mixing by, e.g. R-T instabilities, or energy exchange by conduction.

But without any gravity or velocity then R-T or K-H instabilities are not really expected.

L. Kaper: Where do you meet the ISM? You would expect that the structure introduced there (due to R-T instabilities) would be the most important effect.

It would be very interesting to find out which structures are formed right after the wind is initiated after the birth of an O star. Then the structure close to the star might be of even greater importance. These structures may be observable in the near IR spectrum of still embedded OB stars.

S. Owocki: The size of “wind-blown bubble” in the ISM depends on the ISM density and wind mass loss rate. For WR stars with \(\dot{M} \sim 10^{-5}M_\odot/\text{yr}\) and ISM density of \(n \sim 1 - 10 \text{ cm}^{-3}\) the sizes are of order \(\sim 10\) parsecs. R-T instability should indeed be important at the wind-ISM interface.

Regarding the birth of a star, the wind should move out to large distances \(\sim 100R_\star\) after only a short time \(< 1\) year; the formation of the bubble in ISM may take \(10^4 \sim 10^5\) years.

A. de Koter: You showed how for an O-star model the clumping factor evolves as a function of distance of the star. At about 30 \(R_\star\) it decreases from about \(\sqrt{f} \sim 3 - 4\) to lower values reaching approximately unity at about 150 \(R_\star\). Can you indicate from what region the radio-flux originates to make clear the different clumpings which are appropriate when deriving mass loss from the radio-flux in contrast to Hα (O stars), He II 4686 (O stars, WR stars) and UV resonance lines, these lines being formed within the first few radii?
S. Owocki: This depends on the mass loss rate. For this case of an OB supergiant (similar to ζ Pup), the radio photospheres are typically at a few 100 \(R_\star \). HeI 4686 is typically formed within about 0.5 \(R_\star \) from the surface. And UV resonance lines are formed throughout the wind.

R. Walder: What changes in the density/velocity structure would you expect when you apply a physical excitation mechanism to the instabilities, e.g. non-radial pulsations?

S. Owocki: The structure will likely be stronger, and consist of a combination of small-scale instability structures and larger-scale structure from the NRP (at least for low order \(l \)). The low frequency structure may also survive to larger radii because the associated structure takes longer to interact and to dissipate.