ABOUT POLAR EJECTION EVENTS AND SURGES

M.L. Loucif1,2, S. Koutchmy1, G. Stellmach1, A. Georgakilas3, K. Bocchialini4 and J-P. Delaboudinière4

1Institut d’Astrophysique de Paris-CNRS, 98 bis Bd Arago, F-75014 Paris, France
2CRAAG, BP 63, Bouzareah-Alger, Algeria
3Astron. Institute, National Observatory of Athens, 15236 Palaio Penteli, Greece
4Institut d’Astrophysique Spatiale, Univ. Paris XI-CNRS, Bat. 121, Orsay F-91405 (FR)

ABSTRACT

H_α-time sequences and CCD spectra of observations taken with the 16’ NSO/SP coronograph are revisited in the light of recently obtained HeII polar surge sequences taken with EIT-SOHO. We interpret small polar surge events seen in H_α as the cool counterpart of a more extended coronal phenomenon which could be the result of an explosive release of energy of magnetic origin. The dynamical behaviour of small ejecta could also be considered as a microsurge in the frame of evolving loops assuming a preferential heating at their top. Accordingly, the occurrence of ejecta with large upward velocities should be considered as an exception and need careful and critical analysis.

1. INTRODUCTION

In order to understand coronal heating (apparently continuously supplied), and the mechanism that produces the solar wind, dynamic and explosive events near the solar surface (lower corona) have to be considered as possible sources, besides high and/or intermediate frequency dissipation of MHD-Waves (e.g. Baudin et al., 1996). Dynamic events in form of nanoflares, being ubiquitously seen at the solar limb, were already suggested by Parker (1988). The newly described SXR polar Coronal Flashes and jets (Koutchmy et al., 1997) seem here to be valid candidates as well many very small scale phenomena reported in EUV. Here we try to establish their possible relation to simultaneous H_α observations.

2. HeII POLAR SURGES AND TRANSIENT BRIGHTENINGS (FLASHES)

2.1. Analysis of a time series of EIT - HeII frames of a selected part on the disk

We extracted from the EIT archive a time series taken on the N-polar region, which includes a C.H., using the HeII/SIXI - 304 channel working in a partial mode. Every frame is taken with a 30 sec exp. time in a cadence close to 1mn. Many transient brightenings are seen; because of their rather short lifetimes we also call them “flashes”. We choose several typical events (all on the disk) as shown in fig.1 marked from A to I. Their respective light curves are given in fig.2; We used different integration areas to measure the instantaneous flux, given by the number of pixels in both radial and tangential direction. The highest resolution is 1x1 px which is barely limited by the effect of solar rotation (not removed). Brightenings are observed having typical lifetimes from 4 to 6 mn to more than 15 mn. Note the event “D” which is recurrent with a period of the order of 15 mn. It appears that these HeII events are not just clusters of spicules but rather different eruptive events resembling to small surges.

2.2. Analysis of time series taken simultaneously in HeII and H_α near the limb

From a comparison of single shot pairs of simultaneous images (fig.3.) it is difficult to ascertain any detailed relation between observed HeII events and a corresponding H_α counterpart. Only the time series (fig.4.) reveal a definite relation: The HeII surge appears first, while the corresponding H_α event is seen as brightening about 10 mn later. Both events start with an intensity enhancement at the base, with subsequently expansion upwards, then fading first in H_α and then (about 5 mn later) in HeII. A blob (cloud) appears over the region in the late H_α phase. A detailed description of the H_α ejections is found in Koutchmy and Loucif, 1992, and Loucif (1994); our typical example is shown in fig.5. The small polar surge phenomenon may be considered as the cooler counterpart of a more extended coronal phenomenon which could be the result of an explosive release of energy of magnetic origin. We now think that the dynamical behaviour of small ejecta could also be interpreted in the frame of evolving microflaring loops, assuming a preferential heating at their top. Accordingly, the occurrence of ejecta with large upward velocities should be considered as an exception and need a more careful and critical analysis.

© European Space Agency • Provided by the NASA Astrophysics Data System
Figure 1. Several typical events (on the disk) marked from A to I.

Figure 2. Light Curves of Several Typical HeII Flashes - 304 Å - EIT/SOHO - 1px = 2.55"
Figure 3. Well developed polar surges simultaneously observed in Hα and HeII 304.

Figure 4. Time series of simultaneously observed frames of polar surge phenomena in Hα and HeII 304.

3. CONCLUSION

The apparent correlation between the described HeII-EUV Impulsive Events and their counterpart in Hα needs a careful assessment before any definite scenario be proposed. It is not clear indeed they can be valid candidates to explain the fast solar wind.

ACKNOWLEDGMENTS

We thank A. Garcia and J-P. Zimmermann for help, J. Gurman for help and constant attention to our requests.

REFERENCES