grounds and identifies cores. For regions with $|b| > 30^\circ$ and
[Ecliptic latitude] $> 20^\circ$, 581 individual Δl_{90} cores have been identified.
The distribution and physical properties of the cores will be presented. Results
are compared with previous observations and new directions for millimeter
line observations are suggested.

This work was performed while S. J. C. held a National Research Council - Phillips Laboratory Research Associateship.

17.06

SPINR — A System for Three Dimensional Ultraviolet Imaging Spectroscopy of Interstellar Gas and Dust

T.A. Cook, V.J. Taylor, S. Chakrabarti (Boston U.)

We are currently constructing the Spectrograph for Photometric Imaging with Numeric Reconstruction (SPINR) for high spectral resolution (5A over
a 900 to 1400A bandpass) imaging of the Scorpius region from a sounding
rocket. The system is designed to map (in two spatial dimensions and one
spectral dimension) the ultraviolet spectral properties of a ten by ten degree
field using a novel spinning spectrograph technique. We discuss the design
and status of the hardware as well as simulations of the software needed
deconvolve the data.

By using SPINR to measure the spectral properties of the scattered light
from the interstellar medium (ISM) as well as the absorption spectra to the
collection of stars at different depths in the field we can constrain the physical
properties of the ISM more closely than with either method alone.

17.07

Recent Results from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

T.M. Bania, J.M. Jackson, A.D. Bolatto, M. Huang, J.G. Ingalls (Boston U.), S. Balm, A.P. Lane, A.A. Stark (CfA), J. Staughun, J. Stutzki (Cologne)

The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) is a 1.7 m diameter off-axis submillimeter-wave telescope operating at
the South Pole. Since its installation in the 1994-95 austral summer, AST/RO has been observing the [C I] 492 GHz fine-structure line toward a variety of
Galactic and extragalactic objects. The goal is to investigate the photodissociation
of molecular gas by ultraviolet radiation in a broad range of physical
environments.

This poster summarizes the major scientific results thus far. (1) To investigate
a low-metallicity environment, we have detected and analyzed the
[C I] emission from the Magellanic Clouds. (2) We determine the scale
height of [C I] emission in the Galaxy by measuring several strips at constant
Galactic longitude. (3) We have detected [C I] in absorption against the
reference lines toward the Galactic Center, providing evidence that
much of the neutral carbon present in the galactic disk resides in very cold,
translucent clouds. (4) We have detected [C I] emission from 8 high latitude
clouds. These translucent clouds, exposed to modest UV fields, are the
simplest laboratories to study the transition between molecular and atomic
matter. (5) We have surveyed 50 southern H I regions and detect [C I] toward
every object.

17.08

CH$^+$ Production in J-type Shocks

A. Peimbert (Princeton U.)

Numerical models of the chemistry of multi-fluid MHD shocks in diffuse
 molecular clouds have been calculated; 36 species were studied obtaining
column densities and line profiles; special attention was given to CH$^+$, CH
 and OH production. Particular attention has been given to J-type shocks,
which have thus far been unexplored, for densities in the range of
15 cm$^{-3}$ < n_H < 50 cm$^{-3}$ with molecular hydrogen abundance of 0.2 < n_H < 0.5. Excitation of H^+ in the shock was studied with predicted column
densities of rotationally excited levels. Implications for the production of
interstellar CH$^+$ will be discussed.

17.09

A Search for the CO-H2 dinner in the Galaxy

R.J. Allen, L. Loinard (STScI, A.R.W. McKellar (NRC of Canada), J.
Lequeux (DEMIRM, Obs. de Paris)

We have used the 30m IRAM millimeter radio telescope to search for two
low-lying rotational transitions of the CO-H2 dimer in the emission spectra
of 3 Galactic sources and in the absorption spectrum of a low-latitude extragalactic continuum source. The transitions are the 111- \rightarrow 000+ line at
109.21 GHz, and the 110+ \rightarrow 101- line at 90.84 GHz. The search targets
were the TMC 1 and L 134 dark clouds, the L 1157 bipolar outflow, and the
compact radio continuum source 2013+370. The spectral search covered the
frequency ranges from 90.58 - 91.10 GHz and from 108.95 - 109.46 GHz.
Several known emission lines were found including HCN(12-11),HCN(10-9), OCS, SO, and HNC, but no other features were
seen in the spectra. The rms noise was typically 5 nK per 1 MHz channel
(\sim 3 km s$^{-1}$).

17.10

Interstellar Hydrogen and Deuterium toward Alpha Aql, Alpha Cep, and Alpha Hyi

W. Landsman (Hughes STX), T. Simon (U. of Hawaii)

We present high S/N GHRS G140M spectra of the nearby stars Altair
(α Aql), A7 V, d = 5.0 pc, l = 48, b = -9), α Cep (A7 V, d = 15 pc, l =
101, b = 9), and α Hyi (FO V, d = 21 pc, l = 289, b = -54), which were
obtained as part of a program to study the onset of chromospheric activity in
late-type stars. These three stars are valuable probes of the local interstellar
medium because they are of sufficiently early spectral type to have a large
rotation ($v\sin i > 150$ km s$^{-1}$), and yet are sufficiently cool to show Lyα in
emission. The short line of sight toward Altair is particularly interesting
because Ca II and UV absorption line studies have indicated the presence of
three distinct interstellar components.

The GHRS spectrum of each star shows a broad Lyα emission cut by
interstellar hydrogen and deuterium. We will fit the Lyα profiles to derive
column densities and broadening parameters along the lines of sight.

17.11

Abundance Determinations in Emission-Line Objects: The Revised Emission Line Chart

J. B. Kingdon, R. E. Williams (Space Telescope Science Institute)

We present a revision of the Emission Line Chart (Williams, 1995), which
displayed selected emission lines of different ions excited under nebular
conditions in a convenient format. We have calculated an extensive grid of
photoionization models, covering a wide range of hydrogen densities (n_H)
and stellar temperatures (T_e). The results of this grid are used to identify
line ratios which are insensitive to conditions in the gas and which are
therefore good for deriving abundances. These ratios are highlighted on the
revised chart, where we indicate in which region of the (n_H, T_e) plane they
are most useful. We suggest that researchers give preference to utilizing
the networks when deriving gas-phase abundances in emission-line objects.

17.12

HST/GHRS Observations of 61 Cyg A and 40 Eri A

B.E. Wood, J.L. Linsky (JILA, U. Colorado)

We present new HST/GHRS observations of interstellar absorption lines
seen in UV spectra of 61 Cyg A (K5 V) and 40 Eri A (K1 V). These include
the Lyman-α lines of H I and D I, and the Mg II h and k lines. We use these
data to measure the properties of the local interstellar medium (LISM) and to