matician would pick up either. On page 6 the two-point correlation function for galaxies e_{RS} is introduced without warning or definition (that comes 86 pages later). We are also told that the Earth’s motion relative to the Sun is 20 km s^{-1} towards $l=57^\circ, b=23^\circ$!

I finished reading this book while in a train delayed for 2 hours trying to get through the Severn Tunnel. For once BR can be congratulated on their time-keeping, as I’m not sure I could imagine ploughing through it all in many other circumstances. I suspect that anyone who can understand all of this book probably knows all that there is to glean from it already. — STEVE PHILLIPS.

The importance of stellar mass loss to the evolution of galaxies has been recognised for a long time, especially in the context of chemical evolution and the rôle of supernovae, but it took the opening of the far-ultraviolet window to show just how ubiquitous is the phenomenon. The present proceedings, also to be found as *Astrophysics and Space Science*, 221, No. 1–2, 1994, documents the goings-on (and I mean just that — look at the incidental photographs!) at a workshop devoted to a vital aspect of the mass-loss phenomenon: that of the winds of hot stars. It was a workshop in the very true sense of the word, with a restricted participation, short reviews and new results presented intentionally, one might believe, just to get the discussion going, and those exchanges reported in full; one is reminded of that very early gathering at Boulder in 1968 to chew over the nature of Wolf-Rayet stars.

So where have we got to in this subject? Clearly variability’s the thing. Observations now range across the entire spectrum from radio studies of WR winds, both thermal and non-thermal (see the beautiful eight-year study of HD 193793 by Chen & White), to X-ray studies of shocks and colliding winds in both binaries and apparently single stars. And in between, the very solid work in the optical and ultraviolet is revealing structure in both emission and absorption features on a variety of timescales, some of which are clearly rotationally modulated, pointing perhaps to longitudes of activity; at which juncture that astrophysical maverick, the magnetic field, appears on the scene, either to be the next fashionable universal panacea — or scapegoat! Polarization, already showing its value in reinforcing the notion of clumpy winds, may find some rôle in this area too eventually.

One should not think, however, that this workshop, on an island in the St. Lawrence river, was just for observers to compare notes (or to watch whales!). The theoreticians make a very strong showing and the Bartol school (with a branch in Munich) is producing very realistic models of a range of phenomena. The aim is to discover just what drives the winds and produces the instabilities, which may, of course, take place in a region not well scrutinized by the observers. The consequences of the models can be followed through to the observable regions, which is where the dialogue can take place.

For the lucky few who attended, this must have been an inspirational workshop. For the rest of us, this volume will convey the full flavour of work in an important and timely topic; it is certainly one that any student starting work in this subject will want to browse. — DAVID STICKLAND.