Si xiii EMISSION LINES IN SOLAR FLARE X-RAY SPECTRA OBTAINED WITH THE P78-1 SATELLITE

F. P. KEENAN, D. L. MCKENZIE, K. J. H. PHILLIPS, AND E. S. CONLON

Received 1993 July 2; accepted 1993 October 15

ABSTRACT

Theoretical Si xiii electron-temperature–sensitive emission-line ratios, which include satellite-line contributions to the intensities of the forbidden (f) 1s² 1S–1s2S 3S, intercombination (i) 1s² 1S–1s2p 3P, and resonance (r) 1s² 1S–1s2p 1P transitions, are presented for G = [I(f) + I(i)]/I(r), R = I(f)/I(i), R₁ = I(1s² 1S–1s3p 1P)/I(r), and R₂ = I(1s² 1S–1s4p 1P)/I(r). These ratios are significantly different from those calculated assuming that satellites do not contribute to f, i, and r, and, in addition, are more temperature-sensitive over the range log Tₑ = 6.4–7.4. Electron temperatures deduced using the new diagnostics in conjunction with observed values of G, R₁, and R₂ from solar-flare spectra obtained by the SOLEX spectrometers aboard the P78-1 satellite are found to be generally consistent. This provides support for the validity of the theoretical R₁ and R₂ diagnostics and also resolves discrepancies noted previously when the line ratios were compared with observations from the Solar Maximum Mission spectrometers. The R ratio, which is in the low-density limit under solar flare conditions, is found not to be a useful Tₑ diagnostic when satellite contributions to f and i are included in the theoretical line ratios. However, the observed values of R from the SOLEX spectra are in good agreement with theoretical predictions, which provides additional support for the accuracy of the line-ratio calculations.

Subject headings: atomic data — Sun: flares — Sun: X-rays, gamma rays

1. INTRODUCTION

The three principal lines of ions in the He i isoelectronic series, namely, the forbidden (f) 1s² 1S–1s2S 3S, intercombination (i) 1s² 1S–1s2p 3P, and resonance (r) 1s² 1S–1s2p 1P transitions, are frequently observed in solar X-ray spectra (see, for example, Phillips et al. 1982; Doschek 1990). They may be used to infer the electron temperature Tₑ and density Nₑ of the emitting plasma through the well-known line intensity ratios G = [I(f) + I(i)]/I(r) and R = I(f)/I(i), respectively (Gabriel & Jordan 1972; Blumenthal, Drake, & Tucker 1972). However, the theoretical values of these ratios are critically dependent on the atomic data adopted in their calculation, especially the electron-impact excitation rates between the 1s² 1S ground state and the 1s2L states (Gabriel & Jordan 1972). Over the last few years, there have been many theoretical determinations of G and R, with the most accurate currently available probably being those of Keenan and coworkers for ions between O vii and Ar xvii (Keenan, Yatal, & Kingston 1984; Keenan & McCann 1987; McCann & Keenan 1987, 1988; Keenan et al. 1987, 1989, 1991, 1992; Coffey et al. 1993; Phillips et al. 1994), which are based on electron excitation rates derived with the R-matrix code of Burke & Robb (1975).

Keenan, Kingston, & McKenzie (1985, 1986) and Keenan et al. (1987) have extended the above work to derive emission-line ratios in O vii, Ne ix, and Mg xii, involving the 1s² 1S–1snp 1P, n = 2, 3, and 4, transitions, namely, R₁ = I(1s² 1S–1s3p 1P)/I(r) and R₂ = I(1s² 1S–1s4p 1P)/I(r). These ratios are more sensitive to electron temperature than the G ratio, which is frequently used as a temperature diagnostic for the He i isoelectronic series. These authors compared their results with solar observations from the SOLEX spectrometers and found excellent agreement between electron temperatures deduced from G and from R₁ and R₂.

More recently, Keenan, McCann, & Phillips (1990) calculated R₁ and R₂ ratios for Si xiii. They found reasonable agreement between their results and observations from several spacecraft experiments, but notably not those from the Flat Crystal Spectrometer on the Solar Maximum Mission spacecraft, the discrepancy most likely being associated with the observations. In this paper, we extend the investigation of Keenan et al. (1990) by comparing the Si xiii theoretical ratios with solar spectra from the SOLEX scanning spectrometer on the P78-1 satellite.

2. THEORETICAL RATIOS

The atomic data adopted in the line-ratio calculations have been summarized by Keenan et al. (1989). Briefly, the 23 1snl states with n < 6 and l < 3 were included in the model ion, making a total of 37 levels when the fine-structure splitting in the triplet terms was included. The only atomic processes considered were collisional excitation and deexcitation by electrons, spontaneous radiative decay, and dielectronic and radiative recombination to the n = 2 levels, and the plasma was assumed to be optically thin and in coronal equilibrium. Further details may be found in Keenan et al. (1989).

Keenan et al. (1989, 1990) used the model ion discussed above to derive theoretical values of the following Tₑ-sensitive emission-line ratios: G, R₁, and R₂. However, as noted by, for example, Phillips et al. (1994), dielectronic-recombination satellites due to the lithium-like ion, with transitions 1s²nl-
1s2pnl (nonparticipating or "spectator" electron having quantum numbers nl, n ≥ 2) make an important contribution to the measured intensities of the f, i, and r lines for species with atomic numbers Z ≥ 12. Thus, the two strong satellites j (1s2p 3P3/2−1s2p 3D3/2) and k (1s2p 3P1/2−1s2p 3D3/2) blend with the f line (Gabriel 1972), while numerous unresolved weak satellites converge on the r line from the long-wavelength side for increasing values of the principal quantum number n of the spectator electron (Summers 1973). In view of this, we have used the results of Vainshtein & Safronova (1978) to recalculate theoretical values of G, R, R1, and R2, which include the contributions of the strong satellite lines with wavelengths that lie within 10 mÅ of the f, i, and r lines. In Figures 1–3 these ratios are plotted as functions of the electron temperature for N_e = 10^{11} cm^{-3}, although we note that G, R1, and R2 are insensitive to density for N_e ≤ 10^{14} cm^{-3}. Also shown in the figures are the theoretical ratios from Keenan et al. (1989, 1990), which exclude any satellite contributions to f, i, and r.

An inspection of Figures 1–3 reveals that theoretical ratios that include the satellite contributions are significantly different from those that do not, especially at low temperatures, which is expected, as the satellite-line intensities have an approximate T^{-1} dependence (Gabriel 1972). In the cases of R1 and R2, the inclusion of the satellites leads to a decrease in the ratios by ~40% at log T_e = 6.4, but only 3% at log T_e = 7.4. This implies that the electron-temperature sensitivity of R1 and R2 is increased, as the ratios that do not include satellite blending increase by factors of 3.0 (R1) and 4.3 (R2) between log T_e = 6.4 and 7.4, while the ratios that include these contributions change by factors of 4.8 and 7.0, respectively, over the same temperature interval. This effect is even more pronounced for G, where satellites lead to a 57% increase in the

![Fig. 1.](image1.png)
Fig. 1.—The theoretical Si xiii emission-line ratio G = [I(1s2 1S−1s2s 5S) + I(1s2 1S−1s2p 3P_{1/2})]/[I(1s2 1S−1s2p 3P_{3/2})] plotted as a function of electron temperature at an electron density N_e = 10^{11} cm^{-3}. The dashed line curve is for calculations that include satellite-line contributions to the f, i, and r intensities, and the calculations corresponding to the solid-line curve exclude satellite lines.

![Fig. 2.](image2.png)
Fig. 2.—The theoretical Si xiii emission-line ratio R_1 = I(1s2 1S−1s3p 1P)/I(r) plotted as a function of electron temperature at a density N_e = 10^{11} cm^{-3}. The dashed line corresponds to calculations that include satellite-line contributions to I(r), and the solid line corresponds to calculations excluding satellite lines.

![Fig. 3.](image3.png)
Fig. 3.—The theoretical Si xiii emission-line ratio R_2 = I(1s2 1S−1s4p 1P)/I(r) plotted as a function of electron temperature at a density N_e = 10^{11} cm^{-3}. The dashed line corresponds to calculations that include satellite-line contributions to I(r), and the solid line corresponds to calculations excluding satellite lines.
ratio at log \(T_e = 6.4 \), but no change at log \(T_e = 7.4 \). This implies an increase in the \(T_e \) sensitivity over the range log \(T_e = 6.4-7.4 \) from a factor of 1.5 to a factor of 2.4.

3. OBSERVATIONAL DATA

The \(f, i, r, \) and \(1s^2 \; 1S-1snp \; ^1P, \; n = 3 \) and 4, emission lines in Si XIII have been observed at wavelengths of 6.738, 6.686, 6.646, 5.683, and 5.402 \(\text{Å} \), respectively, in solar flare spectra obtained by the SOLEX A and SOLEX B ADP X-ray Bragg Crystal Spectrometers on the US Defense Department P78-1 satellite (McKenzie et al. 1985). In this paper, we consider only measurements made by the SOLEX A spectrometer, because the SOLEX B detector, a microchannel plate, has a discontinuity in its response at 6.75 \(\text{Å} \), the wavelength of the Si K absorption edge (Eng & Landecker 1981). The instrument is described in McKenzie et al. (1980).

We have measured the intensities of the above lines in several solar flares using methods discussed in McKenzie & Landecker (1982). Unfortunately, in the SOLEX observations, the \(f \) line is blended with the Mg XII 1s \(^2S-4p \; ^2P \) line, which also lies at 6.738 \(\text{Å} \) (Garcia & Mack 1965; Erickson 1977). We estimate the contribution of the Mg XII line to the apparent \(f \) line flux based on measurement of the Mg XII 1s \(^2S-3p \; ^2P \) line at 7.107 \(\text{Å} \) (McKenzie et al. 1985); Garcia & Mack (1965) place the last-mentioned line at 7.106 \(\text{Å} \). The Mg XII 1s \(^2S-3p \) line is measured by the same methods as are the Si XIII lines and lies sufficiently close in wavelength to the Si XIII \(f \) line that instrumental uncertainties are negligible. To make the correction, we compute the rates of collisional excitation of the 3p and 4p levels from the ground state and set them equal to the radiative deexcitation rates. The collisional excitation coefficient is (Gabriel & Jordan 1972)

\[
C_{1s} = 8.65 \times 10^{-6} \frac{1}{\omega_1 T_e^{1/2}} \Omega_{1s} \exp \left(\frac{-E_{1s}}{kT_e} \right).
\]

In equation (1), \(\omega_1 \) is the statistical weight of the ground state, \(\Omega_{1s} \) is the collision strength, \(E_{1s} \) is the excitation energy, and \(T_e \) is the electron temperature. The collision strength is approximated as

\[
\Omega_{1s} \approx \frac{8 \pi}{\sqrt{3}} \frac{f_{1s}}{E_0} \omega_1 \bar{g}.
\]

Assuming that the parameter \(\bar{g} \) (Van Regemorter 1962) is the same for both lines, the ratio of the photon intensities is

\[
\frac{I_{1s-4p}}{I_{1s-3p}} = \frac{f_{1s} \lambda_{1s} b_{41} \exp \left[-(E_{14} - E_{13})/kT_e \right]}{f_{1s} \lambda_{1s} b_{31}}.
\]

In equation (3), the oscillator strengths \(f \) and the branching ratios \(b \) are the H i values from Wiese, Smith, & Glennon (1966), the wavelengths \(\lambda \) are from Garcia & Mack (1965), and the temperature is assumed to be 7 MK. By applying equation (3), we found that the Mg XII line contributed 6.2%-15.4% of the flux to the blend at 6.738 \(\text{Å} \), with the average contribution being 9.6%. This correction is small and has little effect on the measured \(G \) ratios, which are listed in Table 1, along with the \(R_1 \) ratios and the single observed value of the \(R_2 \) ratio, observed for the 1980 April 8 flare, the only event in which the Si XIII 1s \(^2S-1s4p \; ^1P \) line was measurable. The statistical uncertainties in the ratios are also given in the table; they are typically 4% for \(G \) and 33% for \(R_1 \). In Figure 4, we show the spectrum of the 1979 March 31, 17:00 UT flare, to illustrate the quality of the observational data.

4. RESULTS AND DISCUSSION

In Table 2 we list the electron temperatures derived from the observed values of \(G, R_1, \) and \(R_2 \) by using the calculations in Figures 1-3 that include the contributions of satellite lines to \(f, i, \) and \(r \) line intensities. An inspection of the table reveals that the temperatures estimated from \(G \) and \(R_1 \) for the 1979 April 3, 1980 May 21, and 1981 May 5 flares are consistent, with differences of \(\leq 0.3 \text{ dex} \). Similarly, for the 1980 April 8 event, the values of \(T_e \) deduced from \(G \) and \(R_2 \) differ only by 0.2 dex. The accuracy of the present calculations for \(G \) has already been established by Keenan et al. (1989) through a comparison with tokamak plasma observations for which the temperature and density have been independently determined. Hence the above results provide support for the validity of the theoretical \(R_1 \), and \(R_2 \) diagnostics. More important, they also resolve the large discrepancies found when the theoretical ratios were compared with observations made with the Flat Crystal Spectrometer (FCS) on the Solar Maximum Mission satellite.

![Fig. 4.—The Si XIII spectrum for the flare of 1979 March 31 at 17:00 UT, showing the \(r, i, f \), and \(1s^2 \; 1S-1s3p \; ^1P, \) and \(1s^2 \; 1S-1s4p \; ^1P \) lines. The last-mentioned line was not detected with sufficient statistical significance to allow it to be used in this study. Notice the breaks in the wavelength scale on the abscissa.](image-url)
TABLE 2

<table>
<thead>
<tr>
<th>Date</th>
<th>UT</th>
<th>G</th>
<th>(R_1)</th>
<th>(R_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979 Mar 31</td>
<td>17:00</td>
<td>6.8</td>
<td>a</td>
<td>...</td>
</tr>
<tr>
<td>1979 Mar 31</td>
<td>23:21</td>
<td>b</td>
<td>6.8</td>
<td>...</td>
</tr>
<tr>
<td>1979 Apr 3</td>
<td>04:20</td>
<td>6.9</td>
<td>6.6</td>
<td>...</td>
</tr>
<tr>
<td>1980 Apr 4</td>
<td>16:00</td>
<td>7.0</td>
<td>a</td>
<td>...</td>
</tr>
<tr>
<td>1980 Apr 8</td>
<td>03:24</td>
<td>7.2</td>
<td>a</td>
<td>7.0</td>
</tr>
<tr>
<td>1980 May 21</td>
<td>21:50</td>
<td>7.0</td>
<td>6.9</td>
<td>...</td>
</tr>
<tr>
<td>1981 May 5</td>
<td>14:09</td>
<td>7.2</td>
<td>6.9</td>
<td>...</td>
</tr>
</tbody>
</table>

a Observed line ratio is larger than theoretical high-temperature limit.
b Observed line ratio is smaller than theoretical high-temperature limit.

(Keenan et al. 1990). These discrepancies are either associated with the instrument or are due to time variations of line fluxes within the spectral scan duration.

For the 1979 March 31 flare at 1700 UT and the 1980 April 4 and 8 events, the \(R_1 \) ratios are larger than the theoretical high-temperature limits (see Table 2), although reducing these ratios by their observational uncertainties (see § 3) would lead to electron temperature estimates compatible with those deduced from \(G \). However, the \(G \) ratio for the 1979 March 31 flare at 2321 UT is 12% smaller than the theoretical high-temperature limit, which is well outside the observational error (§ 3). A possible explanation for this is that the flare is not in ionization equilibrium, with the H-like ion number density being very low. Under these conditions, dielectronic and radiative recombinations of H-like Si XIV would not be important mechanisms for populating the 1s2s \(^2\)S and 1s2p \(^2\)P levels of Si XIII, leading to a decrease in the predicted value of \(G \), but not \(R_1 \), as the latter is relatively insensitive to recombination processes (see Fig. 3 of McCann & Keenan 1987 and Fig. 1 of Keenan et al. 1990). (The correction for Mg XII blending of the f line in this flare was only 8.5% and so cannot account for the small measured \(G \) ratio.) It is interesting to note that the measured \(G \) ratio for the 1979 March 31, 2321 UT flare (\(G = 0.60 \)) would imply \(T_e \) = 6.8 in the absence of dielectronic and radiative recombinations (McCann & Keenan 1987), in excellent agreement with the temperature estimated from \(R_1 \). On the other hand, it is difficult to understand why the plasma in this flare alone should be transiently ionizing; the observations were not made during the rapid rise phase of the flare. However, we can offer no other explanation for this apparent discrepancy between theory and observation.

Finally, we note that the ratio \(R = R(f)/R(i) \) is predicted to be density sensitive under solar plasma conditions for the He-like ions C IV, O VII, Ne IX, and Mg XI (McKenzie et al. 1980; Doyle 1980; McKenzie 1987; Linford & Wolfson 1988). The Si XIII \(R \) ratio is only density sensitive for \(N_e \geq 10^{13} \) cm\(^{-3} \) (Keenan et al. 1989), and hence one would expect this ratio to be in its low-density limit (called \(R_0 \)) in solar coronal plasmas. In Figure 5, we therefore plot \(R_0 \) as a function of temperature, where, as before, we have both included and excluded the contribution of satellites to the \(f \) and \(i \) line intensities. An inspection of the figure reveals that, as with \(G \), \(R_1 \), and \(R_2 \), the inclusion of satellites leads to very large changes in the theoretical values of \(R_0 \), especially at low electron temperatures. In addition, \(R_0 \) no longer increases monotonically with \(T_e \), but rather decreases rapidly up to \(T_e \) = 7.0, and then increases slowly. This implies that \(R_0 \) cannot be used as an electron temperature diagnostic. Although it is not possible to estimate temperatures reliably from \(R_0 \), it is still useful to compare theoretical and observed values of the ratio. In Table 3 we summarize \(R_0 \) ratios measured from the SOLEX flare observations discussed in § 3; the statistical uncertainties are included in the table. Also listed in the table are the theoretical values of \(R_0 \), which have been derived using the flare electron temperatures in Table 2 in conjunction with the calculations illustrated in Figure 5 that include satellite contributions to \(i \) and \(f \). An inspection of the table reveals excellent agreement between theory and observation, with discrepancies that average only 9%, which is within the typical observational uncertainty. This provides further support for the accuracy of the theoretical line ratios, and hence the atomic data used in their calculation.

© American Astronomical Society • Provided by the NASA Astrophysics Data System
We thank A. E. Kingston for his continued interest in this work. E. S. C. is grateful to the Science and Engineering Research Council (UK) for financial support. This work was supported by the Nuffield Foundation and NATO Travel Grant CRG.930722, and, at The Aerospace Corporation, by the US Air Force Space and Missile Systems Center under contract F04701-88-C-0089.

REFERENCES

Eng, W., & Landecker, P. B. 1981, Nucl. Inst. Meth., 190, 149
Erickson, G. W. 1977, J. Phys. Chem. Ref. Data, 6, 831