BOOK REVIEWS


This book is the first of a new series by Cambridge University Press, dedicated to the ‘Canary Islands Winter Schools of Astrophysics’ containing lectures delivered during this first School, for which the topic of solar physics was chosen. The book contains four major chapters. It starts with thorough updated reviews on the modern techniques of solar observations and the physics behind them (High Spatial Resolution Techniques by O. van der Lühe and Solar Post-Focus Instrumentation by H. Wöhl). The reader is also introduced to the theoretical background of Magnetic Field Measurements by E. Landi Degl'Innocenti and to an overview and interpretation of the results obtained by these sophisticated techniques and instruments (Dynamics of the Solar Atmosphere by P. Mein). The chapters are completed with lists of suggested literature which can help finding references to any specific subject.

I recommend this excellent textbook to students, post-graduate students, and to observation-oriented solar astronomers who want to learn about, or to up-date their knowledge of, modern observational techniques and the physical concepts underlying these measurements, to become an understanding user of either modern ground-based instruments (several of them located on the Canary Islands), or of data obtained by space-born instruments.

Astronomical Institute, Utrecht

L. van Driel-Gesztesy


The book contains the lectures giving during an advanced school for graduate students and young researchers in the field of star formation and early stellar evolution. The subject covers a very wide range of physical processes and is related to various observational phenomena. Since all present-day star formation occurs in molecular clouds, the book begins with a thorough study of these objects. Questions as which are their origin, how do they evolve, how the magnetic fields interact with them are treated in the first part of the book. Then the physics of star formation is reviewed. The origin


© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System