23.06
Millimeter, Microwave and X-Ray Morphology and Spectra of the 07Jan92 Flare

A.V. Silva, R.P. Lin, I. de Pater (UC Berkeley), S.M. White, M.R. Kundu (Univ. of Maryland), D.E. Gary (Caltech), H.S. Hudson (Univ. of Hawaii)

We present here an analysis of the flare observed on 7 January 1992 by BIMA (Berkeley-Illinois-Maryland Millimeter Array), during the December 91-Jan 92 Solar Max'91 campaign. The burst was detected simultaneously by the solar dedicated frequency agile interferometer at OTRV (1 to 18 GHz), the VLA (0.5, 1.5 and 0.33 GHz), and in X-rays by Yohkoh and GOES. Microwave and X-ray time profiles of the flare show two bursts. The first one at 2022 UT was recorded by OTRV, Yohkoh and the VLA at 0.5 GHz. The second burst occurred at 2025 UT, and was observed in X-rays by GOES and Yohkoh (SXT and BXT), and in microwaves by OTRV and the VLA at 1.5 and 0.33 GHz. Both the soft X-ray high resolution images from Yohkoh and the microwave maps from the VLA and OTRV show that this flare had a complicated spatial structure. Yohkoh's soft X-ray images show multiple loops within which different sources brighten at different times. There is good coincidence between the microwave maps and footpoints of the soft X-ray loops.

BIMA, operating at 89 GHz, was only sensitive to sources smaller than about 10" due to its configuration at the time of the burst. BIMA was pointing approximately 100" to the east of the site of the main flare, at the end of an east-west loop seen in soft X-ray. It has a field of view of 120" and therefore missed the main flare. BIMA detected a single burst at about 2026 UT, a delay of almost a minute from the flare detected by the other instruments. Yohkoh's soft X-ray images show a brightening within BIMA's field of view. However, little (if any) microwave emission is seen from this region in OTRV maps. We discuss the implications for the millimeter wave emission mechanisms in this flare.

23.07
Flares in Active Region NOAA 7260 - Role of Emerging Flux and Reconnection


We have studied the evolution of flare activity in NOAA 7260, using X-ray and optical images obtained by the Soft X-ray Telescope (SXT) on the Yohkoh spacecraft and various ground-based data including magnetograms and H-alpha on- and off-band images obtained at the Mees Solar Observatory and National Astronomical Observatory of Japan. Although the active region apparently did not exist during the previous rotation, it emerged on the eastern limb already consisting of a well-developed preceding spot and a growing emerging flux region embedded in the following plage area. There are at least four locations within the region that had high flare activity as it evolved. It appears that, in most of the two dozens of > C1 flares in this region, emerging flux, whether short-lived or long-lived, either played an active role of interacting with existing field or at least destabilized the field configuration, resulting in reconnection of older loops. We will select a few typical emerging flux flares in the region and discuss them in detail.

The Lockheed work was supported by NASA contract NAS8-37334 with MSPC and the Lockheed Independent Research Programme.

Session 23: Max'91 (continued)

Chair: Gordon Holman
Law School 180

23.11
La Palma Observations during the CoMSStoc'92 Campaign

R. Shine, T. Tarbell, K. Tepka, Z. Frank, A. Title (LPARL), and G. Scharmer (SSO)

The Lockheed tunable filter was operated at the Swedish Solar Observatory on La Palma from May 1 through July 5, 1992, covering the last 2 weeks of the CoMSStoc campaign including the Lockheed solar rocket flight on May 12. This instrument obtains high spatial resolution filtergrams, magnetograms, and doppler-