A STUDY ON ELECTRIC CURRENTS IN A SOLAR ACTIVE REGION - A DYNAMO PROCESS AT A PLACE OF REPEATED FLARING

A. HOFMANN
Astrophysikalisches Institut Potsdam, Sonnenobservatorium Einsteinturm, Telegrafenberg, O-1561 Potsdam, F.R.G.

V. RUŽDIJA, B. VRŠNAK
Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 41000 Zagreb, Croatia

UDC 523.985
Original scientific paper
(Received December 2, 1992)

Abstract. We present a study of electric current systems in a solar active region and their relationship to the features of magnetic field and chromospheric activities. We found current cells dominated by azimuthal currents flowing around strongly inclined flux bundles (footpoints of a loop prominence) as well as current cells dominated by field aligned currents flowing along chromospheric fibrils.

The strongest vertical current cell was observed at an area where subflares and brightenings occurred nearly continuously during the whole day. This site of preferred flaring and strong vertical current was located just at the place where two bipolar regions met each other. The morphological structure of velocity and longitudinal field (perpendicular inversion lines) indicates a cyclonic flow across the magnetic field. So we presume the presence of a subphotospheric dynamo process continuously generating the current and the associated energy which is sequently released by the small flares and brightenings observed in the different flux loops rooting in this area.

1. Introduction

In the solar atmosphere electric currents ensure the stability of solar phenomena, such as sunspots and prominences, on the other hand, current driven instabilities belong to the intensively discussed triggering mechanisms in dynamical processes such as flares and filament eruptions.

In the photosphere and lower chromosphere due to the high plasma density the plasma energy dominates over the magnetic energy and the pressure gradient between
structures of highly concentrated flux and the surrounding undisturbed atmosphere is
balanced by Lorentz forces generated by currents flowing across the magnetic field. A
simple framework to detect and analyse azimuthal currents was given by

In the upper chromosphere and lower corona the magnetic energy density dominates
over the plasma energy and the magnetic field is force free, i.e. the electric currents
flow parallel to the magnetic fields. The superpotential energy released in solar flares
is stored by these currents. In various trigger mechanisms of solar flares, field aligned
currents play fundamental roles, too (cf. Table 2 by Spicer and Brown, 1981).
Therefore studies concerning the observational evidence of chromospheric and coronal
currents and their photospheric sources are of high importance in investigating dynamic
phenomena of solar activity.

Using the first available photospheric vector magnetographic measurements Moreton
and Severny(1968) found a coincidence of the brightest parts of solar flares with
locations of high values of vertical current density. Levine (1976) concludes on upward
and downward currents flowing in active regions when comparing results of linear
(constant alpha) force free field extrapolations to EUV and soft X-ray emission features.
A first determination of the large-scale current systems flowing in an active region and
their relationship to flare activity was performed by Ding et al. (1987) based on
photospheric vector magnetograms and the derived current densities, high resolution
heliograms and Hα filtergrams. They found oppositely directed current systems in the
area of a magnetic delta-configuration being the site of flaring.

Hagyard (1988) separated from vector magnetographic observations the source
field, i.e. that part of the field which is produced by currents above the photosphere and
their mirror currents below, and compared the source field with the field produced by
arcades of current-carrying loops across the neutral line. Lin and Giauqueskas (1987)
compared high resolution Hα observations of a flare with the currents derived from a
vectormagnetogram taken simultaneously at the MSFC. They also found a coincidence
between the sites of strong Hα emission and the long-lived peaks of longitudinal current
density.

Hofmann and Kalman (1991) investigated the structure of the magnetic field and
currents at the site of an umbral/penumbral flare ribbon. They found a strongly twisted
field and a current flowing opposite to the magnetic field in the flaring loops. They
used two models to describe the current and energy build-up and compared the
calculated currents with the observed ones. Recently Canfield et al. (1991) found that
the sites of energetic electron precipitation are located close to the neutral line
inbetween the edges of the vertical current maxima.
In this paper an investigation of the vector magnetic field, the derived current densities and Hα observations is carried out with the goal to find the current systems flowing in this region and their relationship to chromospheric features especially at a site of repeated flaring.

2. Observational Results

2.1. The Active Region and Hα Flares

The active region NOAA 4201 was of high magnetic complexity, when it rotated over the disc. It consisted of 4 bipolar magnetic subsystems (henceforth BMS) and the inner structure of the AR-complex changed in dependence on the evolutionary state of each BMS at a certain time. The structure of the AR on June 03, 1983 is shown in Figure 1a. On this day the BMS 1 consisting of the spots P1 and F1 was the dominating group. The BMS 2 is a large scale emerging flux region evolving very rapidly with respect to the other BMSs. BMS 3 and 4 are two small groups located in the southeast and southwest of F1 or P2, respectively. During the day under study, significant developments were observed in the spot F1, leading to a further splitting of the umbra and a reduction of the spot area.

The AR was monitored at the Hvar Observatory with a Solar double telescope which consists of a chromospheric 130/1950 mm telescope equipped with a Hα filter, bandwidth 0.7 Å, and a photospheric 217/2450 mm telescope. A detailed description of the instrument is given by Ambroz et al. (1977). Images of the active region were recorded on film with a time resolution ranging from 2 minutes to 30 seconds, depending on the state of activity in the region.

For our analysis there are several relevant chromospheric structures in the complex which we denote as:

LP - loop shaped prominence connecting P1 and the western part of the splitted umbra of F1
AFS - arch filament system between the leader and follower polarity of the growing EFR (BMS 2)
F - eastward directed fibrils starting in P3
FS - filament system connecting the eastern and western parts of BMS 1

According to Solar Geophysical Data, Comprehensive Reports, 24 flares occured in AR NOAA 4201 on June 3, 1983 and ten of them had a X-ray importance ranging between C1.7 and C8.2. The observations with high resolution carried out at Hvar from 0600 UT to 1600 UT reveal that the majority of the flares occured in and near the southern penumbra of the spot F1. Exclusively subflares occured that day. This was
Fig. 1. (a) Sketch of the active region. BMS = bipolar magnetic system. P or F denotes the preceding or following spot/pore of the corresponding BMS.

(b) Hα filtergram of the active region taken at Hvar Observatory. LP-loop prominence, AFS-arch filament system, F-short intense fibrils, FS-filament system.

(c) Continuum map of the magnetographic field of view and locations of dark Hα structures (hatched) and flares. The same symbol means that flares at separate locations brightened simultaneously. The numbers inside a symbol indicate how often flares occurred at the same location from 06 00 UT to 16 00 UT.
also a general property of AR NOAA 4201 which produced more than 200 flares during its passage over the disc, and less than 5% were flares of Importance 1. No flare with Importance 2 or larger was observed (Ruždjak et al., 1986).

The locations of flares observed at Hvar on June 3 are shown in Figure 1c. One can see that the flares occurring at the preferred place south of the spot F1 were partly homologous, and there was a westward shift of the flaring sites during the day. Few of the flares in this region showed a single point structure, while in the majority a multi-element structure could be detected by an image processing procedure. We would like to stress that flare patches at different locations brightened simultaneously with most of the flares in the preferred area. Such synchronous flares (Gaizauskas, 1983), not implying necessarily that one event triggers the other one are denoted by the same symbol in Figure 1c, where the number inside the symbol denotes how often flares occurred at the same location. A part of synchronism certainly can be considered as being accidental, but the flares located along the filament system FS and the two umbral flares in P1, where the prominence LP terminated, might be physically connected with the flares in the preferred area. Inspecting also the locations of the flares which occurred outside our observing interval as given in Solar Geophysical Data, it appears that the flare activity showed a similar trend during the whole day, i.e. that most flares were located at the same preferred site south of F1.

2.2. Vector Magnetic Field and Current Density

The vector magnetograms were taken with the code impulse vector magnetograph at the Solar Observatory "Einsteinturm" in Potsdam. Details of observation and reduction techniques are described by Hofmann et al. (1989) and Hofmann and Kalman (1991).

In Figure 2a the direction of the transverse magnetic field is shown by segments superposed on the isolines of relative brightness (Stokes-intensity) which outline the contours of sunspots. Figure 2b shows the contour plot of the longitudinal magnetic field. It very clearly reflects a relative 'regular' field of the preceding spot P1 and the high complexity of the following part located in the eastern half of the magnetogram. The line shifter (Doppler compensator) used to center the line onto the photometer slits enabled to measure the line-of-sight velocities, shown in Figure 2c. The transverse component of the magnetic field has been used to derive the vertical current density \(j_z \) shown in Figure 2d. Based on signals of 'field free' solar regions, the standard deviation of the current levels was determined to be \(0.8 \times 10^3 \) Am\(^{-2} \).
Fig. 2. (a) Azimuth plot of the transverse field (segments) superposed on the relative brightness (isolines). The dash-dot line indicates the inversion line of the longitudinal field.

(b) Contours of the longitudinal (line-of-sight) component of the magnetic field. The inner frame marks the cutting shown in Figure 3.

(c) Contours of vertical current densities, derived from the curl of the transverse field.

(d) Contours of Doppler velocities. The inner frame marks the cutting shown in Fig. 3.
3. Interpretation and Discussion

3.1. Currents Dominated by Azimuthal Components

The \(j_r \)-contours derived from the transverse magnetic field mark regions of currents flowing up or down through the photosphere. Presently, sufficiently accurate measurements of the transverse component are more or less restricted to sunspots and their vicinity. There the field is not force-free and we have to take into account that not only current components flowing parallel to the field, but also those flowing perpendicular can contribute to the observed contours. We found such a configuration at the location of cells 6 and 7. This pair of up- and downflowing currents is situated symmetrically to the axis of the footpoint bundle of the loop prominence rooting deep in the penumbral photosphere. In an earlier paper (Hofmann et al., 1989) we studied in more detail the specifics of the magnetic field, currents and \(\text{H}\alpha \) observations at that location and concluded that this pair indicated an azimuthal current flowing around the nearly horizontal flux bundle and generating the Lorentz forces causing its concentration.

We find a configuration with similar characteristics at the other end of the loop prominence rooting inbetween the cells 2a and 3 in an umbral region, too. So we interpret also this pair as an azimuthal current flowing from area 2a to area 3 around the eastern root-bundle of the loop prominence.

3.2. Current Cell 1

The current cell 1 is located in the leading polarity of the emergent flux region BMS2 just at the south-west end of the arch filament system AFS. At this location we can not find such a counterpart (a comparable current strength situated in the same polarity) so that we do not conclude in the same way as for the pairs in section 3.1. Rather we assume that this current cell is dominated by field aligned currents flowing concentrated in the arch filament system. From the \(\text{H}\alpha \) observations and the longitudinal field map it is evident that the magnetic loops of this system reenter the photosphere eastward of current cell 1 distinctly less concentrated. The transverse component is there lower or close to the noise level and the upflowing counterpart of cell 1 can not be inferred.

3.3. Current Systems Near the Flaring Site

The region between P4 and F1 was the preferred site of flaring and we intend to investigate the structure of currents in the vicinity of this region. The cells 7 and 8 are situated tightly together on different sides of the neutral line. The field between the areas is directed perpendicular to the neutral line. Furthermore, two short fibrils visible
in Hα (Figure 1b) connect the centre of negative cell 5 with the maxima of the upflowing currents observed in cell 4. Following the conception of Ding et al. (1985) we assume that the fibrils trace horizontal chromospheric and field aligned current systems. Summarizing all facts we conclude on the existence of relatively small scale, but concentrated, current systems flowing from the maxima of cell 4 into the chromosphere and from there parallel to the field along the fibrils toward cell 5.

The cell 2b is located northwest of cell 5, being the most intense source of vertical currents in the AR. A comparison with Figure 1c shows that the cell 2b coincides with the centre of flare activity. Most of the flares occurred one after another at this location nearly during the whole day. The energy released by these flares cannot be stored in a long build up process before the individual flares and one has to find a mechanism which permits the energy generation a short time before or/and during each flare.

This site of homologous flaring is located at the BMS position where the two developing bipolar systems BMS1 and 3 met and interact. That should be the site of powerful motions and velocity shear.

In Figure 3 we show cuttings of the maps of the longitudinal field and of Doppler velocity taken just from the location of the current cell 2. In the Doppler velocity we find an inversion line oriented nearly parallel to the radius vector of the disk. The region is about 26° outside disc center, so the direction of the inversion line is influenced by the perspective. Radially diverging motions (Evershed type) will lead to an inversion line perpendicular to the radius vector, whereas the observed ones should be caused by a more cyclonic motion. This region of cyclonic motion is crossed by an inversion line of the magnetic field. Such configurations are very often observed as preferred sites of flaring (Martres et al., 1971; Martres and Soru-Escaut, 1977). The reversal of the flow in a region of inversion of the magnetic polarity creates electromotive forces and a current is driven into the corona. Such dynamo models were developed supposing similarities between the solar photosphere and the ionosphere of the Earth (Sen and White, 1972; Kan et al., 1983). Henoux and Somov (1987, 1990 and 1991) studied very intensively the problem of current generation by motions across the line of force. Hofmann and Kalman (1991) reported on an observation in which the inferred current flowed opposite to those given in an photospheric dynamo model by Henoux and Somov (1987). In that observation the vortex motion was located inside a sunspot. The region studied in this paper is located in the photosphere where we have a higher temperature (and ionization) compared to the sunspot. This is possibly a better condition for a dynamo action. So we assume that the current and energy being dissipated in the sequence of small flares and brightenings is continuously generated by a dynamo effect in the sub-photospheric level inbetween the two bipolar regions. The single flares are triggered by current interruption in single flux systems rooting in this site of cyclonic motion.
4. Conclusion

The plasma of an active region can be described either in the frame of the currents or the magnetic field picture. A number of coronal and chromospheric processes - for instance the high rate of energy dissipation can be explained easier using the currents than in the magnetic field description.

Electric currents cannot be measured directly in the solar atmosphere. Some limited information \((j)\) can be derived only indirectly from measurements of the vector magnetic field \(B\). In Table 1 we present the summary of the estimated values of net electric current densities \((j)\) and total electric currents \((I)\) in the inferred current cells. So, one aim of this paper is to study the morphological relationship between magnetic fields and currents. Different features observed in H\(\alpha\) are of great help to identify currents which are connected.
Table 1 Sizes, net current densities \(j \) and current strengths \(I \) of strongest \(J \)-areas

<table>
<thead>
<tr>
<th>Area</th>
<th>Size ((10^{12} \text{m}^2))</th>
<th>(j) ((10^2 \text{Am}^{-2}))</th>
<th>(I) ((10^{11} \text{A}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>(-5.5\pm3.6)</td>
<td>(-6.5\pm4.3)</td>
</tr>
<tr>
<td>2a</td>
<td>35</td>
<td>(2.2\pm1.1)</td>
<td>(2.6\pm1.3)</td>
</tr>
<tr>
<td>2b</td>
<td>202</td>
<td>(12.1\pm6.0)</td>
<td>(14.3\pm7.1)</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>(-2.8\pm2.1)</td>
<td>(-3.3\pm2.5)</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>(6.3\pm3.2)</td>
<td>(7.5\pm3.8)</td>
</tr>
<tr>
<td>5</td>
<td>107</td>
<td>(-6.9\pm3.4)</td>
<td>(-8.2\pm4.0)</td>
</tr>
<tr>
<td>6</td>
<td>107</td>
<td>(6.4\pm2.6)</td>
<td>(7.6\pm3.1)</td>
</tr>
<tr>
<td>7</td>
<td>83</td>
<td>(-4.7\pm2.0)</td>
<td>(-5.5\pm2.4)</td>
</tr>
</tbody>
</table>

- We found pairs of up- and downflowing currents of the same magnitude at two places. Both cells of each pair were located more or less symmetrically to the axes of the concentrated flux bundle of a loop prominence. We conclude that these cells are dominated by currents which flow azimuthal around the concentrated flux bundle running very flat into the photosphere. The intensity of the currents amounts to about \(3 \cdot 10^{11} \text{ A} \) or \(6 \cdot 10^{11} \text{ A} \), respectively.

- At one place we found neighbouring current contours located in different polarities. The centres of the contours are connected by chromospheric fibrils, so that we presume the existence of field aligned currents closed in the chromosphere and corona.

- We found the most intense current cell with a current intensity of about \(1.4 \cdot 10^{12} \text{ A} \) at a place of repeated flaring. The directions of the inversion lines of velocity and magnetic field indicate there a cyclonic flow in a region of polarity inversion.

We infer a subphotospheric dynamo process creating a current and a more or less continuously energy input into the corona. Single flux systems become unstable and triggered by current interruption, non-potential energy is released in the flux systems by small flares and brightenings. This scenario is suitable to explain the very often observed sequences of small homologous flares.

References

Sažetak. Prikazuju se istraživanja sustava električnih struja u jednom aktivnom području i njihova veza sa svojstvima magnetskih polja i kromosferskih aktivnosti. Ustanovili smo postojanje čelija pretežito azimutalnih struja koje teku oko vrlo magnutih cijevi magnetskog toka (nožišta petljaste prominencije), kao i čelija struja koje teku pretežno uzduž magnetskog polja kromosferskih fibrila.

Najsnažnija čelija vertikalne struje ustanovljena je u području gdje su tijekom čitavog dana, skoro neprekidno, opažani bljeskov i pojačanja sjaj kromosfere. To područje, u kojem se pojavio velik broj bljeskova i nalazila snažna vertikalna struja, bilo je na mjestu sastajanja dva bipolarna područja. Morfološko ustrojstvo polja brzina i uzdužnog magnetskog polja upućuju na ciklonsko kolanje popreko magnetskog polja. Stoga pretpostavljamo postojanje subfotosferskog procesa dinama koji neprekidno generira struju, a s njom povezana energija se postupno oslobađa u malim bljeskovima i slabijim procesima koji dovode do povremenih povećanja sjaja kromosfere, opaženim u različitim petljama magnetskog toka usidrenih u tom području.

Alissandrakis, C.É., see Schmieder et al. (1989)
Ambrož, P., 1979, About the conditions for solar observations at the Hvar Observatory, 3, 37.
Ambrož, P., Ruždjak, V., 1982, Solar Physics at Hvar Observatory, 6, 89.
Antonopoulou, E., 1982, Light variations outside eclipses in the infrared of the RS CVn-type binary stars, 6, 55.
Anzer, U., see Démoulin et al. (1989).
Anzer, U., see Hood and Anzer (1989).
Baade, D., 1982, Rapid spectroscopic variability of the Be stars 10 CMa and η Cen, 6, 65.
Baade, D., 1982, A search for large scale motions in the atmospheres of the early B-type supergiants γ and δ Arae, 6, 67.
Balázs, B.A., 1982, The shape and angular velocity of the galactic spiral pattern, 6, S1.
Ballereau, D., see Koubsky et al. (1987).
Balthasar, H., see Wiehr et al. (1989).
Bianco, G., see Bartolini et al. (1983).
Birin, I., see Čalić and Birin (1979).
Boehm, C., see Cester et al. (1982).
Bossi, M., see Antonello et al. (1983).
Božić, H., see Pavlovski and Božić (1982).
Brajša, R., see Pohjolainen et al. (1991).
Brajša, R., see Urpo et al. (1989).
Brajša, R., see Vršnak et al. (1989).
Brosche, P., 1982, Tidal friction and Earth’s rotation, 6, S55.
Brynildsen, N., see Engvold et al. (1989).
Bumba, V., 1982, Significance of observations for modeling of sunspots and their groups development, 6, 101.
Bumba, V., see Ambrož et al. (1977).
Burnet, M., see Waelkens et al. (1983).
Buyukliev, G., see Rušin et al. (1989).
Catalano, F.A., see Schneider et al. (1987).
Cester, B., Ferluga, S., Boehm, C., Pavlovski, K., 1982, Preliminary results of photoelectric observations with interferential filters of some Be stars, 6, 31.
Čaldarević, M., see Džubur et al. (1987).
Čalić, B., Birin, I., 1979, Adjustment and analysis of results of measuring the Hvar Observatory geodetical test net, 3, 55.
Chauville, J., see Koubsky et al. (1987).
DAČIĆ, M., see SADŽAKOV et al. (1982).
DAČIĆ, M., see SADŽAKOV et al. (1982).
DADIĆ, Ž., 1982, Croatian astronomers in Hungary by the end of 18th and the beginning of the 19th century, 6, S115.
DELIYANNIS, J., MOURADIAN, Z., 1989, Observational aspects of a prominence from HeI 10830 data analysis, 13, 63.
DE MAERSCHALK, D., see GOOSSENS et al. (1983).
DÉMouLIN, P., PRIEST, E.R., 1989, How to form a dip in a magnetic field before the formation of a solar prominence, 13, 261.
DÉMouLIN, P., see SCHMIEDEr et al. (1989).
DERMENDJIEV, V., see RUŠIN et al. (1989).
DIMITRIJEVIĆ, M.S., 1982, Similarities of Stark line widths within a given spectrum and irregular energy level structure, 6, 185.
DINTINJANA, B., 1982, Stellar photoelectric photometer, 6, S109.
DJOKIĆ, M., 1982, Analysis of the latitude differences obtained from the subgroups of the new Belgrade’s latitude program, 6, S81.
DJURKOVIĆ, P.M., 1982, Double stars and the newly discovered galaxy-satellite of the Milky Way, 6, S47.
DOUKHLEV, P., see DERMENDJIEV, et al. (1989).
DWIVEDI, B.N., see RAJU and DWIVEDI (1989).
ĐURASEVIĆ, G., see KNEŽEVIĆ et al. (1982).
ENGVOLD, O., JENSEN, E., YI, Z., BRYNILDSEN, N., 1989, Distribution of velocities in the pre-eruptive phase of a quiescent prominence, 13, 205.
ENGVOLD, O., see You and ENGvOLD (1989).
FANG, Ch., ZHANG, Q., YIN, S., LIVINGSTONE, W., 1989, Semi-empirical models at different heights of a quiescent prominence, 13, 363.
Farinella, P., see Paolicchi et al. (1982).
Farinella, P., see Zapallà et al. (1982).
Ferluga, S., see Cester et al. (1982).
Ferreira, J., see Schmieder et al. (1989).
Fontenla, J., see Vial et al. (1989).
Fulchignoni, M., see Barucci and Fulchignoni (1982).
Gaizauskas, V., see Lin and Gaizauskas (1989).
Giovannelli, F., see Bartolini et al. (1983).
Gokhale, M.H., see Nagabhushana and Gokhale (1989).
Goossens, M., see Van der Linden and Goossens (1989).
Gouttebroze, P., 1989, Radiative transfer in cylindrical prominence threads, 13, 305.
Gouttebroze, P., see Vial et al. (1989).
Graf, T., see Koubsky et al. (1987).
Grujić, R., Teleki, G., 1982, An analysis of the characteristics of the Talcott levels of the Belgrade zenith-telescope, 6, 571.
Grujić, R., see Teleki and Grujić (1982).
Grygar, J., see Mikulašek and Grygar (1978).
Grygar, J., see Pavlovskii and Grygar (1982).
Grygar, J., see Pavlovskii et al. (1979).
Gu, X.M., Lin, J., Li, Q.S., 1989, Quantitative research of the field of a loop prominence system, 13, 171.
Guarnieri, A., see Bartolini et al. (1983).
Guerrero, G., see Antonello et al. (1983).
Gulliver, A.F. see Koubsky et al. (1987).
Gurm, H.S., see Badalia and Gurm (1983).
Hadrava, P., 1986, Roche lobe in eccentric orbits, 10, 1.
Harmanec, P., see Koubsky et al. (1987).
Harmanec, P., see Pavlovski et al. (1979).
Havlíček, K., see Ambrož et al. (1977).
Heinzel, P., see Kotč and Heinzel (1989).
Hood, A.W. see De Bruyne and Hood (1989).
Horn, J., see Koubsky et al. (1987).
Horn, J., see Pavlovski et al. (1979).
Iliev, L.H., see Koubsky et al. (1987).
Iluridze, I.S., see Gigolashvili and Iluridze (1989).
Ivanišević, G., see Ševarlić and Ivanišević (1982).
Jaschek, C., see Andrillat et al. (1983).
Jaschek, M., see Andrillat et al. (1983).
Jensen, E., see Engvold et al. (1989).
Jurač, S., see Pohjolainen et al. (1991).
Jurač, S., see Vršnak et al. (1991).
Klepikov, V.Yu., see Gheonjian et al. (1989).
Kotrč, P., see Ruždjak et al. (1984).
Koubsky, P., Pavlovski, K., 1982, Photoelectric photometry at Hvar Observatory, 6, 1.

Koubsky, P., see Pavlovski et al. (1979).

Koutchmy, S., see Darvann et al. (1989).

Koutchmy, S., see Zirker and Koutchmy (1989).

Kren, G., Vršnak, B., Ruždjak, V., 1984, The determination of the reduction factors for sunspot observations at the Astronomical observatory Zagreb, 8, 1.

Kren, G., see Urho et al. (1985).

Križ, S., see Pavlovski and Križ (1982).

Križ, S., see Pavlovski et al. (1979).

Kubičela, A., 1982, Orthogonal components of the apparent yearly precession of the Sun, 6, 339.

Kuk, V., see Skoko and Kuk (1977).

Lampens, P., see Goossens et al. (1983).

Landi Degl’Innocenti, E., see Bommier et al. (1989).

Lang, K.R., 1989, Radio emission from quiescent filaments, 13, 93.

Leone, F., see Schneider et al. (1987).

Li, G.S. see Gu et al. (1989).

Lin, J., see Gu et al. (1989).

Lin, Y., Gaizauskas, V., 1989, Spasmodic twisting of an active region filament prior to a flare, 13, 413.

Livingstone, W., see Fang et al. (1989).

Logožar, R., 1986, Quasistatic absorption coefficient of two component gases, 10, 23.
Lokner, V., see Andreić et al. (1978).
Lorenzi, L., 1982, *Explorative simulation for reproducing a variety of spiral structures by the restricted three-body problem*, 6, 75.
Lyonis, R.W., see Koubsky et al. (1987).
Madej, J., see Musielok and Madej (1987).
Maitzen, H.M., see Hensberge and Maitzen (1983).
Makarova, E., see Delone et al. (1989).
Mantegazza, L., see Antonello and Mantegazza (1983).
Mantegazza, L., see Antonello et al. (1983).
Mantegazza, L., see Antonello et al. (1983).
Mein, N., see Mein et al. (1989).
Mein, N., see Raadu et al. (1987).
Mein, P., see Schmieder and Mein (1989).
Mein, P., see Schmieder et al. (1989).
Mercier, C., see Ruždjak et al. (1984).
Messerotti, M., see Zlobec and Messerotti (1982).
Milić, B.S., *Excitation of the ion cyclotron waves in multispecies plasmas*, 11, 117.
Milić, B.S., see Krstić and Milić (1987).
Mouradian, Z., see Deliyannis and Mouradian (1989).
Mouradian, Z., see Noéns and Mouradian (1989).
Nagabhushana, B.S., Gokhale, M.H., 1989, Photospheric field gradient in the
 neighbourhood of quiescent prominences, 13, 25.
 Nikiforova, T.P., 1989, Spectral lines structural features of the active region
 prominence, 13, 229.
 Nikiforova, T.P., Sobolev, A.M., 1989, On the probable double-loop structure of the
 faint flare-like disc object, 13, 179.
 Ninkov, Z., Yang, S., Walker, G., 1983, Rapid spectroscopic variations in γ Cas and
 ζ Oph, 7, 167.
 Ninković, S., 1982, Position and role of astronomy in new system of education, 6,
 S135.
 Noéns, J.C., Mouradian, Z., 1989, Some observations of the coronal environment of
 prominences, 13, 71.
 Noéns, J.C., see Mein et al. (1989).
 Nogić, Č., see Solarić et al. (1990).
 Nogić, Č., see Solarić et al. (1990).
 Nogić, Č., see Solarić et al. (1990).
 Novak, N., see Ruždjak et al. (1981).
 Novak, N., see Ruždjak et al. (1981).
 Odobašić, B., see Kulišić et al. (1978).
 Paolicchi, P., Zappalà, V., Farinella, P., 1982, Some ideas for a semiempirical theory
 of catastrophic impact processes among asteroids, 6, 163.
 Paolicchi, P., see Farinella et al. (1982).
 Paolicchi, P., see Zappalà et al. (1982).
 Pastori, L., see Antonello et al. (1983).
 Pavlovski, K., 1981, Simulated numerical transformation between similar wide band
 photometric systems, 5, 1.
 Pavlovski, K., 1983, Photometric variability of Be stars, 7, 133.
 Pavlovski, K., Božić, H., 1982, UBV photometry of some Be stars: Progress Report,
 6, 45.
 Pavlovski, K., Grygar, J., 1982, Rotational period of the Ap star ET Andromedae, 6,
 35.
 Pavlovski, K., Križ, S., 1982, Influence of a thick accretion disc on the light curve of
 SX Cas, 6, 41.
 Pavlovski, K., Harmanec, P., Grygar, J., Horn, J., Koubsky, P., Ždarsky, F., Križ,
 S., 1979, The Hvar Observatory colour system and extinction study, 3, 1.
 Pavlovski, K., see Božić and Pavlovski (1988).
 Pavlovski, K., see Harmanec and Pavlovski (1983).
 Pavlovski, K., see Koubsky and Pavlovski (1982).
 Pavlovski, P., see Ruždjak and Pavlovski (1987)
 Pavlovski, K., see Cester et al. (1982).

Pavlovski, K., see Knežević et al. (1982).
Pavlovski, K., see Kuljišić et al. (1978).
Petković, V., 1977, Introductory word, 1, 1.
Petković, V., 1977, Determination of geodetic coordinates of the Hvar Observatory, 1, 31.
Piccioni, A., see Bartolini et al. (1983).
Pohjolainen, S., see Urpo and Pohjolainen (1987).
Pohjolainen, S., see Urpo et al. (1989).
Poletto, G., 1987, Modelling solar magnetic field configurations, 11, 79.
Porfir’eva, E., see Delone et al. (1989).
Priest, E.R., see Démoulin et al. (1989).
Ptáček, J., see Ambrož et al. (1977).
Redcobořodý, Y.N., 1989, To the problem of instability of the solar atmosphere caused by absorption of radiation energy, 13, 299.
Rompolt, B., 1980, Doppler brightening effect in Hα line for optically thin moving prominences, 4, 39.
Rompolt, B., 1980, Doppler brightening of active prominences in hydrogen Balmer lines, 4, 49.
Rompolt, B., 1980, Doppler dimming of active prominences in the hydrogen Lyα line, 4, 55.
Rompolt, B., see Urpo et al. (1985).
Roschini, E., see Delone et al. (1989).
Rovira, M., see Vial et al. (1989).
Rudnikowa, E.G., 1989, On the Balmer and Paschen energy decrements in different brightness prominences, 13, 357.
Rufener, F., see Waëlkens and Rufener (1983).

Hvar Obs. Bull. 16 (1992) 1, 41-55

Hvar Observatory, Faculty of Geodesy • Provided by the NASA Astrophysics Data System
Ruždjak, V., Vršnak, B., Zlobec, P., 1986, Changes of polarization in the dm-m range during the flare of May 16, 1981, 10, 11.
Ruždjak, V., see Ambrož and Ruždjak (1982).
Ruždjak, V., see Božić and Ruždjak (1980).
Ruždjak, V., see Vršnak and Ruždjak (1982).
Ruždjak, V., see Brajša et al. (1989).
Ruždjak, V., see Džubur et al. (1987).
Ruždjak, V., see Hofmann et al. (1989).
Ruždjak, V., see Kren et al. (1984).
Ruždjak, V., see Pohjolainen et al. (1991).
Ruždjak, V., see Urpo et al. (1985).
Ruždjak, V., see Urpo et al. (1989).
Ruždjak, V., see Vršnak et al. (1986).
Ruždjak, V., see Vršnak et al. (1988).
Ruždjak, V., see Vršnak et al. (1989).
Ruždjak, V., see Vršnak et al. (1991).
Ruždjak, V., see Vršnak et al. (1991).
Ružičić, Ž., see Vršnak et al. (1988).
Rybanský, M., see Rušin et al. (1989).
Sadžakov, S., Dačić, M., Šaletić, D., 1982, Program of observations of the catalogue of double and Pulkovo stars with the Belgrade Large Meridian Circle, 6, S101.
Sahal-Bréchot, see Bommier et al. (1989).
Scardia, M., see Antonello et al. (1983).
Schmieder, B., see Mein et al. (1989).
Schmieder, B., see Raadu et al. (1987).
Schober, H.J., 1984, Surface properties of asteroids, 8, 51.
Schober, H.J., see Ruždjak et al. (1984).
Schroll, A., see Brajša et al. (1989).
Schroll, A., see Ruždjak et al. (1984).
Schroll, A., see Urpo et al. (1989).
Schrooten, M., see Goossens et al. (1983).
Skender, I., see Solarić et al. (1991).
Sobolev, A.M., see Nikiforova and Sobolev (1989).
Solarić, N., Špoljarić, D., Nogić, Č., 1990, Analysis of the accuracy of automatic azimuth determination by measuring zenith distance of stars with the electronic theodolite Kern E2, 14, 1.
Solarić, N., Špoljarić, D., Nogić, Č., 1990, Reception of radio time signals before the automatic determination of grid azimuth by celestial bodies, 14, 23.
Soru-Escault, I., see Mouradian and Soru-Escault (1989).
Stagg, C., 1983, The upcoming photometric campaign on o And, KX And, KY And, LQ And, EW Lac, 7, 149.
Stellmacher, G., see Wiehr et al. (1989).
Stepanov, A.I., see Gheonjian et al. (1989).
Stockenhuber, H., see Breger and Stockenhuber (1983).
Stupar, B., see Muminović et al. (1982).
Stupar, M. see Muminović et al. (1982).
Suda, J., see Ambrož et al. (1977).
Suda, J., see Kotrč and Suda (1985).

Sykora, J., 1979, Successful observation of a large but surprisingly quiet region on the Sun, 3, 25.
Sykora, J., see Letus and Sykora (1982).
Šaletić, D., see Sadžakov et al. (1982).
Šaletić, D., see Sadžakov et al. (1982).
Ševarlić, B.M., 1982, On the application of photography to astronomy, 6, S107.
Ševarlić, B.M., 1982, The actual state of teaching of astronomy in the world, 6, S143.
Ševarlić, B.M., Teleki, G., 1982, Epitome fundamentorum astronomie III - catalogues of stellar parallaxes, proper motions and radial velocities, 6, S123.
Špoljarić, D., see Solarić and Špoljarić (1990).
Špoljarić, D., see Solarić et al. (1991).
Šuveljak, M., Vujnović, V., 1982, An analysis of competition of pupils of primary and secondary schools in astronomy, 6, S129.
Teleki, G., see Grujić and Teleki (1982).
Teleki, G., see Ševarlić and Teleki (1982).
Teräsranta, H., see Pohjolainen et al. (1991).
Teräsranta, H., see Urpo et al. (1985).
Teräsranta, H., see Urpo et al. (1989).
Thejappa, G., see Zlobec and Thejappa (1987).
Thomas, R.N., see Doazan and Thomas (1983)
Tohmura, I., see Kubota et al. (1989).
Uesugi, A., see Kubota et al. (1989).
Underhill, A.B., 1983, Observational knowledge about the physical properties of O stars, 7, 1.
Underhill, A.B., 1983, Comments concerning magnetic fields as a possible cause of rapid, irregular variability of early type stars, 7, 345.
Urpo, S., Pohjolainen, S., 1987, Observational evidence of microwave active regions on high solar latitudes, 11, 137.

Urpo, S., see Pohjolainen et al. (1991).

Urpo, S., see Ruždjak et al. (1984).

Van der Linden, D., 1983, Photoelectric photometry of the new β Cephei - variable HD129557, 7, 223.

Velkov, K., see Dermendjiev et al. (1989).

Vresk, M., see Solarić et al. (1991).

Vršnak, B., 1980, Internal mass motions in three eruptive prominences, 4, 17.

Vršnak, B., 1982, Oscillatory motions of a loop prominence, 6, 129.

Vršnak, B., Ruždjak, V., Ružić, Ž., 1988, Solar irradiance perturbations caused by active regions, 12, 1.

Vršnak, B., see Brajša et al. (1989).

Vršnak, B., see Džubur et al. (1987).

Vršnak, B., see Hofmann et al. (1989).

Vršnak, B., see Kren et al. (1984).

Vršnak, B., see Pohjolainen et al. (1991).

Vršnak, B., see Ruždjak et al. (1981).

Vršnak, B., see Ruždjak et al. (1981).

Vršnak, B., see Ruždjak et al. (1984).

Vršnak, B., see Ruždjak et al. (1986).
Vršnak, B., see Ruždjak et al. (1988).
Vršnak, B., see Urpo et al. (1989).
Vujnović, V., 1977, *Conditions for astronomical observations at the Hvar Observatory*, 1, 41.
Vujnović, V., see Andreić et al. (1978).
Vujnović, V., see Šuveljak and Vujnović (1982).
Walker, G.A.H. see Fraser et al. (1983).
Walker, G., see Ninkov et al. (1983).
Yakunina, G., see Delone et al. (1989).
Yang, S., see Fraser et al. (1983).
Yang, S., see Ninkov et al. (1983).
Yi, Z. see Engvold et al. (1989).
Yin, S., see Fang et al. (1989).
Zappalà, V., see Farinella et al. (1982).
Zappalà, V., see Paolicchi et al. (1982).
Zhang, Q., see Chen et al. (1989).
Zirker, J.B., see Darvann et al. (1989).
Zlobec, P., Thejappa, G., 1987, *Type II burst high time resolution and polarization characteristics at frequencies higher than 200 MHz*, 11, 111.

Zlobec, P., see Ruždjak et al. (1984).
Zlobec, P., see Ruždjak et al. (1986).
Zlobec, P., see Vršnak et al. (1986).
Zlobec, P., see Vršnak et al. (1991).
Zlobec, P., see Vršnak et al. (1991).
Zloch, F., see Ruždjak et al. (1988).
Zloch, F., see Vršnak et al. (1989).
Ždarsky, F. see Pavlovski et al. (1979).

Astrometry and Celestial mechanics

Ephemeris time correction during solar eclipse on April 29, 1976

Investigation of the EW-WE effect in the latitude determinations with the Belgrade zenith-telescope

Analysis of the latitude differences obtained from the subgroups of the new Belgrade’s latitude program
Djokić, M., 1982, 6, S81.

Properties of the North PET star catalogue

Program of observations of the catalogue of double and Pulkovo stars with the Belgrade Large Meridian Circle

Epitome fundamentorum astronomiae III - catalogues of stellar parallaxes, proper motions and radial velocities
Ševarlić, B.M., Teleki, G., 1982, 6, S123.

Analysis of the accuracy of automatic azimuth determination by measuring zenith distance of stars with the electronic theodolite Kern E2
Solarić, N., Špoljarić, D., Nogić, Č., 1990, 14, 1.

Automatic determination of the geographical longitude using an electronic theodolite Kern E2 by observing celestial bodies

Automatic determination of the astronomical azimuth by observing a celestial body using the electronic theodolite Kern E2 and Laptop Computer Toshiba T1600

Astronomical instrumentation, methods and techniques

The stellar instrumentation of the Hvar Observatory and its possible development
Mayer, P., 1977, 1, 5.

Solar double telescope at the Hvar Observatory
A small chromospheric patrol instrument

The Hvar Observatory colour system and extinction study

Simulated numerical transformation between similar wide band photometric systems

A successful modification of a commercially-made photoelectric photometer
Muminović, M., Stupar, M., Stupar, B., 1982, 6, 81.

An analysis of the characteristics of the Talcott levels of the Belgrade zenith-telescope

On the instrumentation-observational development of astronomy in Yugoslavia
Teleki, G., 1982, 6, S91.

On the application of photography to astronomy
Ševarlić, B.M., 1982, 6, S107.

Stellar photoelectric photometer

The determination of the reduction factors for sunspot observations at the Astronomical observatory Zagreb
Kren, G., Vršnak, B., Ruždjak, V., 1984, 8, 1.

The wind protection of the Hvar solar telescope
Ambrož, P., 1985, 9, 33.

PC based image processing of solar activity features

Solar interferometry applied to dynamics of prominences. Ground based and space future prospects

An automated procedure for measurements of prominence transverse velocities

Linear polarization of hydrogen Hα line in filaments: method and results of computation

Reception of radio time signals before the automatic determination of grid azimuth by celestial bodies
Solarić, N., Špoljarić, D., Nogić, Č., 1990, 14, 23.

The analysis of the stop-watch accuracy in the electronic calculator HP 41 CX

Cosmology

On isotropic deformation in a static universe
Lukačević, I., 1982, 6, S17.

58 Hvar Obs. Bull. 16 (1992) 1, 57-74

Hvar Observatory, Faculty of Geodesy • Provided by the NASA Astrophysics Data System
Galaxies

Explorative simulation for reproducing a variety of spiral structures by the restricted three-body problem
Lorenzi, L., 1982, 6, 75.

The shape and angular velocity of the galactic spiral pattern
Balázs, B.A., 1982, 6, S1.

Double stars and the newly discovered galaxy-satellite of the Milky Way
Djurković, P.M., 1982, 6, S47.

General

Croatian astronomers in Hungary by the end of 18th and the beginning of the 19th century
Dadić, Ž., 1982, 6, S115.

A sketch of a Serbo-Croatian astronomical terminology
Ševarlić, B.M., Ivanišević, G., 1982, 6, S127.

An analysis of competition of pupils of primary and secondary schools in astronomy
Šuveljak, M., Vujnović, V., 1982, 6, S129.

Position and role of astronomy in new system of education
Ninković, S., 1982, 6, S135.

Teaching of astronomy at Yugoslav universities
Vukičević-Karabin, M., 1982, 6, S137.

The actual state of teaching of astronomy in the world
Ševarlić, B.M., 1982, 6, S143.

General: Editorials, notices

Introductory word
Petković, V., 1977, 1, 1.

Editorial
Vujnović, V., 1979, 3, iii.

Editorial
Vujnović, V., 1980, 4, iii.

Editorial
Vujnović, V., 1982, 6, iii.

Editorial
Teleki, G., 1982, 6, S vi.

Preface
Harmanec, P., Pavlovski, K., 1983, 7, iii.

Editorial
Vujnović, V., 1985, 9, iii.

Hvar Obs. Bull. 16 (1992) 1, 57-74

Editorial

Erratum

Preface

Geodesy

Determination of geodetic coordinates of the Hvar Observatory

Adjustment and analysis of results of measuring the Hvar Observatory geodetical test net
Čalić, B., Birin, I., 1979, 3, 55.

Institutions reports

Seismological station Hvar

Hvar Observatory, report on FBS/SERF trial period May 1979

Contribution of the Pic du Midi to SMY
Muller, R., 1980, 4, 5.

A note on some results of the Debrecen Observatory

Observations carried out at Hvar Observatory during SMY August 1979 - February 1981

Post SMY observations at Hvar Observatory, May - June 1981

Photoelectric photometry at Hvar Observatory
Koubsky, P., Pavlovski, K., 1982, 6, 1.

Solar Physics at Hvar Observatory
Ambrož, P., Ruždjak, V., 1982, 6, 89.

Research in laboratory astrophysics in Yugoslavia
Vujnović, V., 1982, 6, 179.

H-alpha flares recorded at Hvar Observatory during the "Solar International Month - September 1988"
Ruždjak, V., Vršnak, B., Zloch, F., 1988, 12, 11.

Planetary system

Fragmentation of Hyperion and creating of Saturn’s satellites

Tidal friction and Earth’s rotation
 Brosche, P., 1982, 6, S55.

Planetary system: Asteroids

A review of photoelectric photometry of asteroids made at Hvar Observatory
 Knežević, Z., Đurašević, G., Pavlovski, K., 1982, 6, 141.

Collisional evolution of asteroids

Laboratory simulations of asteroid lightcurves: The effects of albedo markings and surface morphology variations

Some ideas for a semiempirical theory of catastrophic impact processes among asteroids

Slowly spinning asteroids

Surface properties of asteroids
 Schober, H.J., 1984, 8, 51.

Solar oscillations and asteroids?

Plasmas

Similarities of Stark line widths within a given spectrum and irregular energy level structure
 Dimitrijević, M.S., 1982, 6, 185.

On second harmonic radio emission in solar atmosphere

On the spontaneous excitation of electromagnetic ion cyclotron waves by electron drift
 Milić, B.S., 1982, 6, 195.

Quasistatic absorption coefficient of two component gases
 Logožar, R., 1986, 10, 23.

Excitation of the ion cyclotron waves in multispecies plasmas
 Milić, B.S., 11, 117.

On the possibility of collisionless damping of transverse electromagnetic waves in solar atmosphere

Hvar Obs. Bull. 16 (1992) 1, 57-74
Beam-plasma instability for protons in the solar corona: The cold case in the electrosstatic approximation
Messerotti, M., 1987, 11, 125.

Radio astronomy

Cyg X at 38 MHz
Milogradov-Turin, J., 1982, 6, S23.
The flux density of Cyg A at 38 MHz
Milogradov-Turin, J., 1982, 6, S35.

Site testing

Conditions for astronomical observations at the Hvar Observatory
Vujnović, V., 1977, 1, 41.
The Hvar Observatory colour system and extinction study
About the conditions for solar observations at the Hvar Observatory
Ambrož, P., 1979, 3, 37.

Stars

Stars: Accretion discs

Influence of a thick accretion disc on the light curve of SX Cas
Pavlovski, K., Križ, S., 1982, 6, 41.
The transfer of radiation in accretion discs
Križ, S., 1982, 6, 53.

Stars: Ap stars

Preliminary analysis of the Ap-star CQ UMa
Rotational period of the Ap star ET Andromedae
Pavlovski, K., Grygar, J., 1982, 6, 35.
Phase variation of the β index in Ap stars
Stars: B stars

A search for large scale motions in the atmospheres of the early B-type supergiants γ and δ Arae
The photometric variability of B stars: a general approach
Observational properties of the β CMa stars
The photospheres and magnetospheres of the magnetic B stars

Stars: Be stars

Review of observational facts about Be stars
Variable mass-flux in Be stars
A note on the variability of λ Eri and the pulsation in Be stars
Radial-velocity variations of the Be-shell star HD 183656 (V923 Aql)

Stars: Be stars: Photometry

Preliminary results of photoelectric observations with interferential filters of some Be stars
UBV photometry of some Be stars: Progress Report
Pavlovski, K., Božić, H., 1982, 6, 45.
Photometric variations of some early Be stars
Waelkens, C., Rufener, F., Burnet, M., 1983, 7, 125.
Photometric variability of Be stars
Pavlovski, K., 1983, 7, 133.
The southern Be star photometric campaign: a first report
The upcoming photometric campaign on o And, KX And, KY And, LQ And, EW Lac
Stagg, C., 1983, 7, 149.
Photometry of the Be star zeta Tauri in 1981-1986: Long-term, orbital and rapid variations revealed
Božić, H., Pavlovski, K., 1988, 12, 15.

Hvar Obs. Bull. 16 (1992) 1, 57-74
Stars: Be stars: Rapid variability

Rapid spectroscopic variability of the Be stars 10 CMa and η Cen
Baade, D., 1982, 6, 65.

Some episodes of rapid variability of HDE 245770 = A 0535+26

Rapid spectroscopic variations in γ Cas and ζ Oph

Discovery and preliminary identification of two retrograde nonradial pulsation modes in the Be star ν Centauri

RV variations of the Balmer emission lines of φ Persei

Stars: β Cephei stars

Light variations of σ Sco

Photoelectric photometry of the new β Cephei - variable HD129557
Van der Linden, D., 1983, 7, 223.

The line profile variations of Spica

Stars: Binary stars and multiple systems

The importance of observing binary stars
Cester, B., 1982, 6, 21.

Light variations outside eclipses in the infrared of the RS CVn - type binary stars
Antonopoulou, E., 1982, 6, 55.

The light surface device and the intrinsic variables
Lorenzi, L., 1982, 6, 69.

Explorative simulation for reproducing a variety of spiral structures by the restricted three-body problem
Lorenzi, L., 1982, 6, 75.

Double stars and the newly discovered galaxy-satellite of the Milky Way
Djurković, P.M., 1982, 6, S47.

Roche lobe in eccentric orbits
Hadrava, P., 1986, 10, 1.
Stars: CP stars

Pulsation of CP2 stars

Variability of the λ-5200 feature in CP2-stars

Photometric properties of CP-stars

Spectroscopic properties of CP stars

The occurrence of CP1 and CP2 stars in the region of the north galactic pole: first results

Photometric variability of CP3 stars

Element identification in the UV spectrum of HR 465
Fuhrmann, K., 1987, 11, 35.

Stars: δ Scuti stars

Delta Scuti and related stars: review

Light curves of four previously unknown delta Scuti stars
Waelkens, C., Rufener, F., 1983, 7, 301.

Spectroscopic variations of the δ Scuti variables 20 CVn, ρ Pup and 38 Eri

HR 4684: A possible example of resonance in Delta Scuti stars

The pulsational amplitudes of Delta Scuti stars

The light variations of the Delta Scuti star 92 Tauri

Two color diagram for Delta Scuti stars and HR 1287 in UBV

Stars: Dwarf novae

Dwarf novae
Križ, S., 1987, 11, 45.
Stars: Early type stars

A search for large scale motions in the atmospheres of the early B-type supergiants γ and δ ARAe
Observational knowledge about the physical properties of O stars
The photometric variability of B stars: a general approach
Variability of Ae and A-shell stars
The photospheres and magnetospheres of the magnetic B stars
Comments concerning magnetic fields as a possible cause of rapid, irregular variability of early type stars

Stars: Starspots

Starspot modelling
Olah, K., 1987, 11, 57.

Stars: Stellar envelopes

Equations of stellar envelopes evolution
Angelov, T., 1982, 6, S21.

Stars: Variable stars

The light surface device and the intrinsic variables
Lorenzi, L., 1982, 6, 69.
Variability of Ae and A-shell stars

Sun

Sun: Corona

The green corona rotation-activity-cycle connections
Letfus, V., Sykora, J., 1982, 6, 117.

On the possibility of collisionless damping of transverse electromagnetic waves in solar atmosphere

Beam-plasma instability for protons in the solar corona: The cold case in the electrostatic approximation
Messerotti, M., 1987, 11, 125.

Sun: Flares

A survey of inclined spectral features in flare spectra taken at Ondřejov Observatory

Hvar Workshop SMY, Concluding remarks

Observations of an active region with successive flares

The two ribbon flare of May 14, 1981

The effects of different basic processes in solar flares

Effects of impulsively heated electrons in solar flares

On the probable double-loop structure of the faint flare-like disc object

Spasmodic twisting of an active region filament prior to a flare
Lin, Y., Gaizauskas, V., 1989, 13, 413.

Microwave and soft X-ray radiation during flares evolving in strong magnetic fields

Launch-times of MHD shocks observed as type II bursts

Sun: Flares: Radio emission

The flares of May 14 and 16, 1981, August 19, 1981, October, 14, 1983 and associated radio events

Changes of polarization in the dm-m range during the flare of May 16, 1981

Microwave and soft X-ray radiation during flares evolving in strong magnetic fields
Sun: Granulation

A comment on the character of the photospheric granular net

Sun: Irradiance

Solar irradiance perturbations caused by active regions
Vršnak, B., Ruždjak, V., Ružič, Ž., 1988, 12, 1.

Sun: Magnetic fields

Extrapolated coronal magnetic fields on the Sun
Modelling solar magnetic field configurations
Formation of a filament around a magnetic region
Microwave and soft X-ray radiation during flares evolving in strong magnetic fields

Sun: Prominences

On some statistical and morphological characteristics of the solar activity N21 cycle quiescent prominences

Sun: Prominence-corona interface

Some observations of the coronal environment of prominences
Corona-prominence interface as seen in Hα
Diagnostic study of prominence-corona interface

Sun: Prominences: Dynamics

Internal mass motions in three eruptive prominences
Photospheric induced destabilization and ejection of prominence material
Dynamical structure of a quiescent prominence
Dynamics of solar prominence on December 7, 1978
An eruptive prominence of September 15, 1989
Oscillatory relaxation of an eruptive prominence
Solar interferometry applied to dynamics of prominences. Ground based and space
 future prospects
Quiescent filament "appearances and disappearances"
Spasmodic twisting of an active region filament prior to a flare
 Lin, Y., Gaizauskas, V., 1989, 13, 413.
Small scale structure and dynamics of prominences

Sun: Prominences: Evolution

Evolution of fine structures in a filament
Laws of evolution and destruction of solar prominences
On the behaviour of the long-living solar filaments

Sun: Prominences: Formation

Formation of a filament around a magnetic region
How to form a dip in a magnetic field before the formation of a solar prominence
Thermal equilibrium of coronal loops and prominence formation
Thermal instability in planar solar coronal structures
Proto-elements of dark solar filaments
Sun: Prominences: Internal mass motions

Internal mass motions in three eruptive prominences

Flow velocities along a solar Hα emission loop

The vertical motion of material in a dark filament observed on October 27, 1984

Vertical flows in a quiescent filament

Distribution of velocities in the pre-eruptive phase of a quiescent prominence

Mass motions in a quiescent prominence and an active one

Radial velocities of solar active and quiescent prominences

An automated procedure for measurements of prominence transverse velocities

Sun: Prominences: Magnetic fields

Magnetic structure of quiescent prominences,

Vector magnetic field and currents at the footpoint of a loop prominence

Photospheric field gradient in the neighbourhood of quiescent prominences

Quantitative research of the field of a loop prominence system

Linear polarization of hydrogen Hα line in filaments: method and results of computation

Magnetic morphologies of various prominences

Sun: Prominences: Models

A three-dimensional model for solar prominences

How to form a dip in a magnetic field before the formation of a solar prominence
MHD stability of line-tied prominence magnetic fields

A model for quiescent solar prominences with normal polarity

Thermal equilibrium of coronal loops and prominence formation

Thermal instability in planar solar coronal structures

Semi-empirical models at different heights of a quiescent prominence
 Fang, Ch., Zhang, Q., Yin, S., Livingstone, W., 1989, 13, 363.

Sun: Prominences: Oscillations

Oscillatory motions of a loop prominence
 Vršnak, B., 1982, 6, 129.

Doppler velocity oscillations in quiescent prominences

Oscillatory relaxation of an eruptive prominence

On oscillations in prominences

Sun: Prominences: Radiative transfer

To the problem of instability of the solar atmosphere caused by absorption of radiation energy

Radiative transfer in cylindrical prominence threads

Hydrogen lines formation in filamentary prominences

Toward hydrogen emission in filamentary prominences
 Zharkova, V.V., 1989, 13, 331.

Sun: Prominences: Radio emission

Radio emission from quiescent filaments
 Lang, K.R., 1989, 13, 93.

Sun: Prominences: Spectrum

Doppler brightening effect in Hα line for optically thin moving prominences
Doppler brightening of active prominences in hydrogen Balmer lines
Rompolt, B., 1980, 4, 49.
Doppler dimming of active prominences in the hydrogen Lyα line
Rompolt, B., 1980, 4, 55.
Observational aspects of a prominence from Hα 10830 data analysis
Spectral lines structural features of the active region prominence
Hydrogen lines formation in filamentary prominences
Toward hydrogen emission in filamentary prominences
Zharkova, V.V., 1989, 13, 331.
Multi-thread structure as a possible solution for the LB problem in solar prominences,
On the Balmer and Paschen energy decrements in different brightness prominences
Rudnikova, E.G., 1989, 13, 357.
Analysis of Hα 10830 Å line in a quiescent prominence

Sun: Prominences: Structure

The helical prominence of March 15, 1977
Vršnak, B., Ruždjak, V., 1982, 6, 123.
The helical prominence of May 26, 1982
Vršnak, B., 1984, 8, 13.
Helical prominences III: the prominence of July 29, 1980
Vršnak, B., 1985, 9, 61.
Evolution of fine structures in a filament
On the spatial distribution of prominence threads
Micro- and macroinhomogeneties of density in a quiescent prominence
Dynamical structure of a quiescent prominence
Radiative transfer in cylindrical prominence threads
Hydrogen lines formation in filamentary prominences

Hvar Obs. Bull. 16 (1992) 1, 57-74

Hvar Observatory, Faculty of Geodesy • Provided by the NASA Astrophysics Data System

Toward hydrogen emission in filamentary prominences
Zharkova, V.V., 1989, 13, 331.

Multi-thread structure as a possible solution for the Lβ problem in solar prominences,

Small scale structure and dynamics of prominences

Sun: Radio emission

Recent topics in solar noise storm interpretation

On second harmonic radio emission in solar atmosphere

Microwave emission from the limb of the Sun: the events of September 8, 1980 and May 10, 1981

Type II burst high time resolution and polarization characteristics at frequencies higher than 200 MHz

Two 11-year cycles of solar radio activity observed at the Ondřejov Observatory in 1962-1986
Tlamich, A., 1987, 11, 133.

Observational evidence of microwave active regions on high solar latitudes
Urpo, S., Pohjolainen, S., 1987, 11, 137.

Motion of high latitude solar microwave sources and comparison with polar prominences

Launch-times of MHD shocks observed as type II bursts

Intensity variations and short time evolution of solar microwave low temperature regions

Sun: Rotation

The green corona rotation-activity-cycle connections
Lefus, V., Sykora, J., 1982, 6, 117.

Orthogonal components of the apparent yearly precession of the Sun

Hvar Obs. Bull. 16 (1992) 1, 57-74
Motion of high latitude solar microwave sources and comparison with polar prominences

Polar crown filaments and solar differential rotation at high latitudes

Sun: Sunspots

Successful observation of a large but surprisingly quiet region on the Sun

Significance of observations for modeling of sunspots and their groups development,

The determination of the reduction factors for sunspot observations at the Astronomical observatory Zagreb
Kren, G., Vršnak, B., Ruždjak, V., 1984, 8, 1.