much room for improvement in ground-based observations at optical wavelengths.

As is evident from the ambivalent answers to some of the key questions, the information presently available does not distinguish between thermal and/or non-thermal models of solar flares. To address that fundamental issue, observations are required with sufficient spatial and temporal resolution to distinguish between large thermal plasma volumes, on the one hand, and beams of energetic electrons which stream through comparably large volumes at speeds of one third or more times the speed of light, on the other. These observations must be obtained in the appropriate spectral range to characterize mildly relativistic electrons, from several tens to several hundreds of keV.

Part of the resolution of these problems will come from the high resolution facilities planned for space in the future: the Solar Optical Telescope, the Pinhole/Occluder Facility, and other instruments leading up to the full-fledged Advanced Solar Observatory. However, it is a strong recommendation of this group that there be, in the next solar maximum, a renewed effort to obtain substantially improved ground-based observations at both optical and radio wavelengths.

5.6.4 Final Statement

This chapter has described our approach to understanding flare physics through analysis of the energy transport and storage in flares. Such an approach can only succeed if accurate, comprehensive data exist and can be understood in the context of a correct model for the flare phenomenon. Neither of these requirements has been met, and so the exercise has to be considered a failure. The introduction to this chapter describes the energy storage and flow in terms of the diagrams shown in Figure 5.1.1 and Figure 5.1.2. It would be safe to bet that not one single entry in these diagrams is presently known to better than an order of magnitude. Nevertheless, we feel that the attempt has been worth the effort, since by failing at this basic level to understand solar flares, we bring into question all more sophisticated channels of analysis.

Despite pessimism about our present state of knowledge, there is little doubt that remarkable progress has been made. We expect that a future exercise along these lines, hopefully during the forthcoming solar maximum, will be considerably more successful.

APPENDIX 5A. FLARES CHOSEN FOR THE ENERGETICS STUDY

G.M. Simnett, R.D. Bentley, P.L. Bornmann, M. Bruner, and B.R. Dennis

5A.0 Introduction

In this appendix we present brief descriptions of the flares which were chosen for the energetics study. A listing of the dates, times, locations, and classifications of these flares is given in Section 5.1 with the rationale for choosing this particular group of flares. More detailed discussions of these flares can be found in Sections 5.2 and 5.3.

5A.1 1980 April 8 at 03:04 UT

Strong, K.T. et al., 1984, Proc. of 25th COSPAR meeting, Graz, Austria.

This flare occurred in Hale region 16747 (Boulder no. 2372), which had been very active in the preceding days. The region was characterized by two large sunspots of opposite polarity, separated by a small, isolated bipolar area in a delta configuration. The longitudinal magnetic field is shown in Figure 5A.1, which also illustrates how the region changed during the preceding days. The isolated pole moved quite rapidly toward the leading sunspot in the days before April 8, leaving the magnetic neutral line highly deformed, with the transverse component of the field showing high magnetic shear.

The light curve for this flare is shown in Figure 5A.2, which illustrates the behavior of X-rays at 26-53 keV (HXRBS) and at 3.9 keV (BCS Ca XIX). Note that the hard X-ray flux observed before 03:03 UT is believed to originate from a different active region on the west limb, since no increase at that time was observed with the BCS or HXIS in their restricted fields of view. The relatively simple time profiles mask an extremely complex flare with a hierarchy of extended magnetic loop structures which became energized at different times and which had substantial temperature structure. Within the loops there appears to be a continuous evolution of the volumes containing the plasma, coupled with significant mass motions during the first few minutes of the impulsive phase. In fact, the maximum upflow of 310 km s\(^{-1}\) was observed around 03:04 UT, before the sharp increase in hard X-rays. The peak turbulent velocity was 120 km s\(^{-1}\). One question we need to address is whether it is important to the flare energetics to consider the detailed morphology or whether it is adequate to analyze simply the full-flare light curves.

The spatial evolution of the flare as imaged in 11.5 to 16 keV X-rays is presented in Figure 5A.3 from the onset
Figure 5A.1: This sequence of figures illustrates the development of Active Region 2372, including the period of the 1980 April 8 flare. The Hα filtergrams and sunspot drawings (courtesy M. McCabe) show the motion of the central bipolar towards the leader spot. The equivalent MSC magnetograms illustrate how the field changed and simplified as the region developed; the April 8 flare marked the end of this particular phase in the evolution of the region.
of the hard X-ray burst at 03:04:06 UT to late in the decay at 03:21:19 UT. The pre-flare brightening in fact starts as early as 02:45 UT and is followed by a second brightening from the same position at 02:59 UT, which leads into the impulsive phase. The position of the magnetic neutral line is drawn on Figure 5A.3(b); the pre-flare brightening is from the region of maximum shear in the transverse field. However, Figure 5A.3(c), which spans the peak in the hard X-ray burst, shows that the X-rays at that time came predominantly from two regions, with a secondary brightening to the east (left). This suggests a small, weak bipolar region that developed to the east of the neutral line near the large, trailing sunspot. The same two bright regions were resolved at 3.5–5.5 keV, before the peak in the hard X-ray burst. In the following minutes, the peak emission at all wavelengths shifted to an area between these two regions, and the hard X-ray emission entered a period of slow, monotonic decay. It was during this period that a region to the east brightened, and Figure 5A.3(b) shows the image accumulated between 03:12:20 and 03:13:57 UT, when this region had reached maximum intensity. There are three other resolved bright points in this image which are either persistent or visible at other wavelengths, or both.

5A.2 1980 May 21 at 20:53 UT

Bibliography:
Duijveman et al., 1982, Solar Phys., 81, 137.

This event was a classical two-ribbon flare, starting with filament activity above the magnetic neutral line that led into the impulsive phase as the filament started to rise. It was
from Hale region 16850, which had produced only subflares with very weak X-ray emission during the previous 100 h; similarly, it was followed by small, weak flares. This was therefore an example of an isolated large flare. The intensity time profile is shown in Figure 5A.4 for 27 to 54 keV X-rays (HXRBS) and the Ca XIX channel (BCS). Once the thermal phase of the flare began, the plasma had an extremely hot component, exceeding $30 \times 10^6 K$, until late in the decay phase.

Figures 5A.5(a) and (c) show the appearance of the flare region in Hx both before and during the main phase of the flare, and Figures 5A.5(b) and (d) show magnetograms for two times before the flare. The bulk of the 16 to 30 keV X-rays during the main impulsive hard X-ray spike appear at position A, with a significant second bright point at B about 27000 km away on the other side of the filament. The 16 to 30 keV X-ray features are superimposed on Figure 5A.5(a) to illustrate this. The X-ray images have been interpreted.
as providing the first observational evidence of footpoint brightening from the chromospheric base of a magnetic loop caused by deposition of non-thermal particles (Hoyng et al., 1981).

In addition to the hard X-ray features, HXIS studied the morphology of the soft X-ray emission above 3.5 keV, both along and across the filament, as the flare evolved. By 20:48 UT, the soft X-ray flux was enhanced along the filament, which had begun to separate at that time. In this pre-flare period there was already soft X-ray emission from A (Figure 5A.5), which appeared as a barely resolved magnetic loop at the site of the newly emerged magnetic flux. There were many resolved X-ray bright points early in the flare, suggesting a variety of magnetic loops. These disappeared at the onset of the impulsive phase just after the filament began to rise.

The Ca XIX line profile began to exhibit the signature of mass motion during this period, and a series of line scans is presented in Figure 5A.6. At 20:53 UT the entire soft X-ray source is observed to be moving upwards at 80 km s\(^{-1}\). By 20:57 UT the motion of the bulk plasma flow diminished to the lowest detectable value of 30 km s\(^{-1}\). However, at the start of the first hard X-ray burst, additional material was injected at a velocity of 370 km s\(^{-1}\), and this is observed as a separate feature in the blue wing of the resonance line in Figure 5A.6(b). This high velocity upflow coincided with a spectral hardening of the X-ray emission to the power law index of \(-4\), a value maintained until 21:04 UT. The detection of blue-shifted material continues to 21:05 UT. Therefore, the energy driving the upflow appears to be deposited in the chromosphere for as long as the spectral index remained around \(-4\), but no longer.

A type II radio burst starts at 20:57 UT, and the flare generated a prompt, energetic (>40 MeV) proton event at 1 AU plus a traveling interplanetary shock which accelerated low energy protons as it moved outward. A type I radio noise storm was seen during the early hours of this motion, accompanied by weak soft X-ray emission from a large (>105 km radius) coronal arch located above the flare site. The arch was visible in soft X-rays for over 10 h.

5A.3 1980 June 29 at 18:03 and 18:22 UT

These two flares are discussed together, since they are related by the coronal disturbances seen both in white light and at X-ray and radio wavelengths. After the first flare at 18:03 UT, a coronal X-ray source was observed by HXIS to move slowly outwards. A coronal mass ejection was detected by C/P until 20:03 UT, and the onset of the event was observed with the Mark-3 K-Coronometer on Mauna Loa from around 18:18 UT, several minutes before the onset of the second (main) flare at 18:22 UT. However, a type II radio burst was only observed for a few minutes from 18:33 to 18:36 UT, and from the observed drift rates it appeared to be associated primarily with the second flare. The velocity measured by the K-Coronometer is 500 km s\(^{-1}\) and the velocity derived from the type II burst is 1100 km s\(^{-1}\). The observations are summarized in Figure 5A.7, which shows

Provided by the NASA Astrophysics Data System
Figure 5A.5 Hα images and magnetograms for the 1980 May 21 flare from Hoyng et al. (1981). (a) The Hα image at 19:06 UT with the contours of the 16 to 30 keV X-ray bright patches superimposed. The X-ray bright patches were observed with HXIS during the two main hard X-ray peaks at 20:56 UT. The frame around the X-ray contours measures 96 x 96 arcsec. (b) Line-of-sight component of the underlying magnetic field at 16:26 UT. (c) The Hα flare at 21:07 UT. (d) The magnetic fields at 20:20 UT. 'A' marks the location of the new sunspot (positive flux), and B gives the location of new negative flux.

the intensity-time profiles for 28 to 55 keV X-rays (HXRBS) and the Ca XIX channel (BCS).

Although both flares occurred on the west limb, they were not from precisely the same location. The first flare was centered approximately 16 arc sec south of the main flare and occurred in coincidence with a subflare from S11 W36, which reached a maximum in Hα at 18:06 UT. The first flare was still visible in soft X-rays when the second flare started. For many hours previously, a large system of loops stretching high into the corona was visible with both HXIS and FCS.

Figure 5A.8 shows the development of the flares as observed in various wavelengths ranging from Hα to Mg XI. Figure 5A.8(a) is an FCS image in Mg XI taken from 18:08:08 to 18:13:07 UT; the dotted line marks the position of the limb as seen by the FCS white-light sensor. The actual limb would be the best-fit smooth curve through these points. The position of the UVSP field of view is outlined in the NW corner. Figure 5A.8(b) shows a smaller FCS raster, again in Mg XI taken from 18:26:27 to 18:30:54 UT, covering the initial decay of the second flare. The enhanced coronal
Figure 5A.6 Sequence of soft X-ray spectra obtained at four times during the impulsive phase of the 1980 May 21 flare in the BCS channel covering the Ca XIX spectral region from 3.165 to 3.231 Å. The smooth curve in each figure represents the synthesized spectrum computed for given values of the electron temperature T_e and the Doppler temperature T_D. In (b) and (c), two synthesized spectra, with one blue-shifted by 3.8 mÅ, are summed to form the spectrum represented by the smooth curves. The dashed lines in the same figures represent the profile of the principal component expected for the given Doppler temperature. The time given for each spectrum is the mean time of the observation interval, and the accumulation period is given below this time.

Figure 5A.7 Soft (top) and hard (bottom) X-ray time profiles for the 1980 June 29 flares similar to Figure 5A.2. Note that SMM emerged from night at 18:02:40 UT during the first of the two flares.
Figure 5A.8 Images of the 1980 June 29 flares in different wavelength ranges at the UT times indicated. (a) FCS image in Mg XI during the first flare. The dotted line marks the position of the limb as seen by the FCS white light sensor. The UVSP field of view is shown in the NW corner of the image. (b) Similar to (a) for the second flare. (c) Hα picture taken at the Ramey Observatory at 18:20 UT during the second flare. (d) Sketch of the solar limb and lower corona summarizing the imaging observations of the two flares. (e) UVSP images in OV and Fe XXI during the second flare.
X-ray emission is clearly visible in both images. Figure 5A.8(c) shows an Hα picture taken at the Ramey Observatory at 18:26 UT. This follows a small brightlimb surge at 18:20 UT, after which a mass of ejected material, subtending 3 arc min at the Earth, became visible. The origin of the second flare is just beyond the west limb. Figure 5A.8(d) is a sketch of the solar limb and lower corona, summarizing these observations.

Figure 5A.8(e) shows UVSP images in O V and Fe XXI during the rise and decay of the second flare. There is clearly a path into the corona to the northwest during the initial stage of the flare, which became less prominent following flare maximum. This is consistent with the southerly swing seen in Hα.

The hard X-ray burst shown in Figure 5A.7 consists of a series of spikes, followed by a smooth, slow decay from 18:25:30 UT. The X-ray spectrum is hardest during the initial rise. The microwave emission structure is simple like a series of spikes, and the burst was strongly right-circularly polarized with a peak frequency of 2.2 GHz. At the onset of the second flare, a series of type III and V radio bursts was observed in coincidence with a blue-shifted feature seen in the Fe XXV line profile. This is coincident with the southerly swing in the Hα spray, suggesting that the motion of the spray had a significant longitudinal component in the solar reference frame.

5A.4 1980 August 31 at 12:48 and 12:52 UT

These flares involved two distinctive and separate energy releases in a compact flare region which produced quite different responses in the radiated emissions and mechanical mass motions. The longitudinal magnetic field structure of the region is shown in Figure 5A.9(a), in which a negative intrusion is visible between the two leading positive sunspots. Figure 5A.9(b) shows the magnetic neutral line and the positions of maximum shear in the longitudinal field. It is from one of these highly sheared regions that the bright flare points A, B, and C occurred, whereas a weak brightening at D shows that there was some interaction with more distant parts of the region.

Figure 5A.10 presents the time profiles for 28 to 500 keV X-rays, the Ca XIX resonance line (3.176 Å), and the microwave intensity at 15.4 GHz. The gross differences between these curves have proved valuable in interpreting the vari-

Figure 5A.9 The magnetic structure of NOAA Active Region 2646. (a) A magnetogram showing the longitudinal fields; note the location of the three sunspots, and the small negative intrusion between the two leading positive spots. Positive and negative polarities are indicated by solid and broken lines, respectively. The magnetogram is approximately 4 arc min square. (b) A schematic diagram of the flare site showing the location of the spot umbrae (shaded area), the neutral line (solid line), and the areas of maximum shear in the transverse field component (dashed lines). The main sites that are discussed in the text are labeled A-D.
ous modes of energy release and energy transport. In the first flare, the impulsive emissions show two main spikes, one at 12:48:42 UT and the other at 12:48:51 UT. The Ca XIX emission was delayed significantly; the peak intensity occurred at 12:49:06 UT, by which time the impulsive emissions had decayed by an order of magnitude from their peak.

In contrast, the onset of the second flare was more noticeable in Ca XIX than in hard X-rays or microwaves, and there was a precursor rise, which by 12:51:25 UT had reached a level equal to the maximum of the first flare (see Figure 5A.10). It was accompanied by a weak increase in hard X-rays but no discernable change in the microwave flux. At 12:51:35 UT the main Ca XIX increase started, this time accompanied by hard X-ray emission but a relatively weak microwave event. The unusual features of the second flare were the close temporal correspondence of the peaks of the Ca XIX and hard X-ray emission and the rapid decay of the Ca XIX emission. There was also a large variation in the brightness of the second flare compared with that of the first at different wave-lengths. In hard X-rays (>28 keV) and in 15.4 GHz microwaves, the second flare was weaker by a factor of 2 and 33 ± 6, respectively. In soft X-rays, the second flare was brighter by a factor of 5.8 in the Ca XIX resonance line, 3 in O VIII, and 8 in Fe XXV. The flares occurred at slightly different locations within the active region, as can be seen from the X-ray images in Figure 5A.11. The first flare, shown in an 8 to 16 keV image in Figure 5A.11(a), had two bright points aligned approximately E-W and on either side of the neutral line. The 16 to 30 keV image confirmed this. There was a blue shift in Ca XIX corresponding to a velocity of 60 ± 20 km s⁻¹ and a line broadening corresponding to a turbulent velocity of 190 ± 40 km s⁻¹. A blue shift, corresponding to a velocity of around 180 km s⁻¹ was also seen with UVSP in the Fe XXI line at 1354 Å, whereas the line broadenings were equivalent to turbulent velocities in the range 66-150 km s⁻¹.

The hard X-rays at the onset of the second flare shown in Figure 5A.11(b) were from an area to the north near point A of Figure 5A.9(b). They subsequently appeared at a point about 6 arcsec to the south [Figure 5A.11(c)] very close to the eastern bright point shown in Figure 5A.11(a). There were no indications of significant blue shifts from the second flare. In fact, to the contrary, the blend of O I and C I at 1355.8 Å observed with UVSP had the red wing enhanced, suggesting downflows of material at chromospheric temperatures. On account of the different locations and the very distinct characteristics of the two flares, it seems that heated plasma from the first flare broke out of the flare loop into an adjacent structure to the north, where it triggered the release of a larger amount of energy to produce the second flare. However, the evolution of the first flare resulted in a completely different set of starting parameters, such as densities and temperatures, governing the development of the second flare.

Figure 5A.10 Light curves of the two flares on 1980 August 31. (a) Microwave flux at 15.4 GHz. (b) Hard X-ray (>28 keV) count rate. (c) Soft X-ray (Ca XIX resonance line at 3.176 Å) light curve. Note the variation in the relative brightness of the two flares at various wavelengths.
Figure 5A.11 HXIS contour plots showing the location of the hard X-rays at the times indicated during the two flares on 1980 August 31. The contours were obtained by deconvolving the collimator response with the iterative technique described by Svestka et al. (1983). The dotted line in (a) shows the location of the magnetic neutral line.

The X-ray spectrum is very similar in shape at the hard X-ray peaks in both flares. The principal difference lies in the region below 15 keV, which is considerably enhanced at the peak of the second flare. In this region the emission is dominated by thermal radiation at \((20 \pm 5) \times 10^6 \) K.

5A.5 1980 November 5 at 22:26 and 22:33 UT

Duijveman, A. et al., 1982, Solar Phys. 81, 137.

These two flares occurred in Hale region 17244 (Boulder no. 2776), which included a group of sunspots in a delta configuration (opposite polarity umbra within a single penumbra). For at least 20 min before the onset of the first flare, there was 3.5 to 5.5 keV X-ray emission from the photospheric magnetic neutral line, with occasional bright points at places which subsequently featured prominently in the main flare. The intensity-time profiles are shown in Figure 5A.12 for 29 to 57 keV X-rays (HXRBS) and 3.5 to 5.5 keV X-rays (HXIS).

These two flares are included in our study because of the complete data coverage available. Ground-based optical, magnetogram, and radio data augment the satellite data from SMM and GOES. The entire flaring region was observed with HXIS, HXRBS, and ground-based stations. Although BCS was turned off during the decay of the second flare, data were available at all other times. This flare was also chosen because density diagnostics are available from the FCS data. The FCS was pointed at the brightest point in the flare, covering a 14 \times 14 arcsec (FWHM) portion of the entire flaring region. The UVSP observed another portion of the flare, which did not overlap with the region seen by FCS. The VLA observed all of the first flare but only the decay of the second flare.

The flares were well observed with the He Multislit Spectrograph at Big Bear Solar Observatory and consequently are illustrated by these observations in somewhat greater detail than is available for the other flares. Figures 5A.13(a) and (b) show a sequence of images of the two flares in both centerline He and He I D3 at 5876 Å. Both flares were classified as two-ribbon flares, although the ribbons remained

Provided by the NASA Astrophysics Data System
stationary and did not separate during either flare. The flares were nearly coplanar and can be regarded as homologous; the main difference between them lies in their overall brightness.

Several important features are apparent from the Hα and He I D3 observations:

- The He I D3 emission points began at the same time as the >28 keV X-rays and continued for approximately the same duration in both flares (see Figure 5A.14).
- The temporal fine structure seen in hard X-rays is also a property of the He I D3 emission; each emission point was relatively short lived, usually lasting no more than 1 min.
- Both flares were a succession of many rapidly forming and decaying bright points extending on both sides of the flare kernels. The last of the bright points to develop were those most distant from the kernels, and they were the least bright. The exception was the bright point to the northeast, which peaked in intensity around 22:33:09 UT, slightly later than the hard X-ray peak from this location as discussed below.
- The flare sites which had bright He I D3 emission also had Hα line profiles typically more than 3 Å wide (FWHM).
- After the initial brightening of the Hα kernels in the second flare, a rebrightening occurred coincident with the secondary hard X-ray maximum at about 22:34:20 UT (Figure 5A.12).

The first flare at 22:26 UT has been studied by Hoyng et al. (1983) with optical, hard X-ray (HXIS), and microwave (VLA) images. Figures 5A.15 (a) and (b) are sketches of the center of the active region showing the locations of the various flare components in Hα and He I D3 relative to the neutral line. The 15-GHz source and the boundaries of the prominent HXIS pixels are also indicated. The region appears to consist of a set of low-lying loops, probably highly sheared, whose footpoints lie in the Hα strands S1 and S2. Above these loops is an overlying loop whose footpoints appear to be in the Hα kernels labeled a and e in Figure 5A.15(b). The VLA images show a bright area that lies across the neutral line at the center of the flaring region. This 15-GHz source had a circular polarization of up to 80% during the first flare with a brightness temperature of >10⁸K. The sense of polarization reversed at the magnetic neutral line. The evolution of the hard X-ray images during the first flare is shown in Figures 5A.16(a), (b), and (c). At the onset of the first flare [Figure 5A.16(a)], the majority of the 16 to 30 keV photons came from the position labeled B in Figure 5A.16(b), which is coincident with the location of the bright He I D3 kernels. By the time of the narrow intense spike at 22:26:30 UT (Figure 5A.12), the hard X-rays were coming from the position labeled T in Figure 5A.16(b), coincident with the location of the microwave source. The 22 to 30 keV image from 22:26:12 to 22:26:38 UT [Figure 5A.16(b)] shows emission from points A, B, and T. It is presumed that T is at the top of the magnetic loop with footpoints at A and B. This loop was situated over the smaller loops which presumably linked the bright Hα strands S1 and S2. Hoyng et al. (1983) estimated that the magnetic field at the neutral line was 700 ± 160 and 480 ± 110 G during the first two hard X-ray peaks, respectively. The loop AB is in-

5-58

Provided by the NASA Astrophysics Data System
Figure 5A.13 (a) Images of first of the two 1980 November 5 flares in Hα and in HeI D$_3$ taken at the times indicated. The first and third rows of photographs are Hα center-line images, and the second and fourth rows are HeI D$_3$ images. (b) As for Figure 5A.13(a) for the second flare on 1980 November 5. Note that this flare began during the decay of the earlier flare and followed the same pattern of development.
interpreted as a small, low-lying loop with a strong horizontal field. From the optical data, Hoyng et al. concluded that the magnetic field rearranged itself over a small area in the center of the active region during the first flare and that a major rearrangement of the magnetic field took place during the second flare on a much larger spatial scale. During the final hard X-ray spike at 22:27:20 UT and on the decay of the first flare [Figure 5A.16(c)], the hard X-rays came almost exclusively from position T, although there is still a resolved bright point at lower energies from B.

At the onset of the second flare [Figure 5A.16(d)], the 16 to 22 keV X-rays came initially from region A and from a point to the south of B, at the position of the end of the bright Heα strand S1 seen in the first flare [Figure 5A.15(b)]. After the onset, the hard X-ray intensity continued the rapid rise and the bright points switched to position B and to a remote point at the eastern end of the filament [Figure 5A.17(a)]. Within 10 to 15 s, this remote emission had died away leaving a bright point at A [Figure 5A.16(e)]. During the final hard X-ray peak at 22:34:30 UT (Figure 5A.12), the hard X-rays were once more concentrated near T [Figure 5A.16(f)]. The appearance of the sequential hard X-ray brightenings from a number of distinct, and in one case widely separated, points suggests that there is a hierarchy of magnetic loops involved. The distant emission shown in Figure 5A.17(a), over 7×10^4 km away from the main flare site, is from the end of a structure which becomes completely filled with hot, X-ray emitting plasma during the decay of the flare [Figure 5A.17(b)]. Bright points corresponding to A, T, and the initial hard X-ray bright point south of B are clearly resolved.

An estimate of the density of the soft-X-ray-emitting plasma is available during the decay of the second flare when FCS was operating in a spectral scanning mode. The measured Ne IX intercombination-to-forbidden-line ratio is density sensitive and indicates a maximum density of 1.5×10^{12} cm$^{-3}$ at the time of the peak in the soft X-ray emission.

The Ca XIX and Fe XXV resonance line profiles observed with BCS during the impulsive phase of the second flare show broadening and extended blue wings visible for 30 s, beginning at the time of the peak hard X-ray flux. The blue shifts correspond to velocities between 200 and 500 km s$^{-1}$, and the line widths indicate that the turbulent velocities reached values of 100-200 km s$^{-1}$.

APPENDIX 5B. A REVIEW OF IMPULSIVE PHASE PHENOMENA

C. de Jager

5B.0 Introduction

In this appendix we present a brief review of impulsive phase phenomena in support of the models used in this chapter to compute the energies of the different components of the flares under study. A more complete review is given in Chapter 2 of this Workshop proceedings.

We begin with the observational characteristics of the impulsive phase, followed by the evidence for multi-thermal or non-thermal phenomena. The significance of time delays between hard X-rays and microwaves is discussed in terms of electron beams and Alfvén waves, two-step acceleration, and secondary bursts at large distances from the primary source. Observations indicating the occurrence of chromo-