INTERPRETATION OF 3He ABUNDANCE VARIATIONS IN THE SOLAR WIND

M. A. COPLAN

Institute for Physical Science and Technology, University of Maryland

K. W. OGILVIE

Goddard Space Flight Center, Greenbelt, Maryland

P. BOCHSLER and J. GEISS

Physikalisches Institut, University of Bern

(Received 19 December, 1983; in revised form 18 May, 1984)

Abstract. The ion composition instrument (ICI) on ISEE-3 has observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km s$^{-1}$. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of 3He flares occurred during this time.

The long-term average 4He$^+$/4He$^+$ + 3He$^+$ flux ratio $\langle R \rangle$, was 2050 \pm 200, in agreement with a previously reported result obtained using part of this data set, and in very good agreement with the previous measurements made over much shorter periods of time with the foil technique. The $\langle R \rangle$ values for 6-month intervals show statistically significant differences. The highest of these values is 2300 and coincides with the solar maximum of cycle 21 indicating that at solar maximum there may be changes in the character and rate of occurrence of short-term variations in $\langle R \rangle$. We also find that $\langle R \rangle$ drops under conditions of low proton flux in the solar wind, and that it is high when solar wind speeds are lowest.

At solar wind speeds above \sim400 km s$^{-1}$ $\langle R \rangle$ is nearly constant at about 2000; at lower speeds it is larger and more variable, in agreement with the idea that the sources of high and low speed wind are different. At times of sector boundary current sheet crossings, identified with coronal streamers, there is a characteristic rise in the value of $\langle R \rangle$ indicating an encounter with a plasma with reduced 3He$^+$ abundance. Autocorrelations have been computed for 4He$^+$ and 3He$^+$ and indicate correlation times of about 14 and 20 hr, respectively. Periods of duration of about one day when R is less than 1000 tend to coincide with the observation of compound streams.

The possibility of detectable increases in 3He$^+$ flux in plasma which left the Sun at the time of 3He flares has been investigated, but no significant increase was seen.

1. Introduction

Since the first observations (Neugebauer and Snyder, 1966), the abundance of helium in the solar wind has been known to be highly variable, but the reasons for this variability have not been firmly established. Almost all systematic observations were of 4He$^+$, however the ion composition instrument (ICI) on the ISEE-3 spacecraft has now made continuous observations of both 4He$^+$ and 3He$^+$ for a wide range of solar wind conditions. In this paper we discuss these observations, with a view towards learning more about the phenomena which govern the abundance of ions in the solar wind.

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System
In the 1960's, it became possible to identify a noble gas component in meteorites as being due to implantation at low energy. It was correctly argued that this component is made up of trapped solar wind particles, and isotopic ratios for noble gases in the solar wind including helium were deduced (Zähringer, 1962; Hintenberger et al., 1965; Eberhardt et al., 1965a, b; Wänke, 1965), which are remarkably close to the ratios that were later directly determined.

Bame et al. (1968) were the first to detect 3He$^{++}$ directly in the present-day solar wind flow and found that rather large variations in the 4He$^{++}$/3He$^{++}$ ratio do occur. A set of precise 4He$^{++}$/3He$^{++}$ ratios in the solar wind were determined by the foil collection method during five Apollo lunar landings (1969–1972) covering periods ranging from one hour to two days (Geiss et al., 1972).

A solar wind 4He$^{++}$/3He$^{++}$ ratio has also been obtained from laboratory analyses of the noble gases in a piece of the Surveyor spacecraft that was brought back to Earth by the Apollo 12 crew (Bühler et al., 1971; Warasila et al., 1974). The results obtained – representing irradiation by the solar wind over several years – were somewhat higher than the results from the foil collection experiments. However, the He/Ne ratio in the Surveyor material indicates that a portion of the helium may have been lost by diffusion, introducing a source of error for the 4He/3He ratio deduced from that material.

Both the long term average abundance of 3He and its short period variations, due for example to interplanetary and solar events, are of interest for at least three reasons:

1. A comparison between present-day foil collection data and studies of solar wind noble gases in young and old lunar material indicates that the abundance of 3He$^{++}$ in the solar wind has increased in the last 4.5×10^9 yr (Eberhardt et al., 1972; Geiss, 1973). However, the average ratio $\langle R \rangle = (^4\text{He}^{++} \text{flux})/(^3\text{He}^{++} \text{flux})$ has dropped at most by 15% during the last 3 to 4×10^9 yr, and this provides a quantitative check on theories of solar mixing (Schatzman and Maeder, 1981; Geiss and Bochsler, 1982). Since only a limited number of exposures was used for determinations by the foil collection experiments, a value of $\langle R \rangle$ obtained over a longer period is desirable in order to obtain a representative long term average for the present-day solar wind, and check for consistency with the Apollo foil results.

2. Assuming that the relative abundance $^4\text{He}^{++}/\text{H}^+$ in the outer convection zone of the Sun is the same as that in interstellar material, that is 0.08 ± 0.01 (Audouze, 1981) and taking the canonical value of $^4\text{He}^{++}$ in the solar wind to be 0.045 ± 0.005, the value given for the fast solar wind by Bame et al. (1977), we see that $^4\text{He}^{++}$ is definitely depleted in the rather steady flow out of coronal holes. It has been argued (Geiss, 1982) that this depletion of $^4\text{He}^{++}$ by a factor of about two in the solar wind from coronal holes occurs near the solar surface by a charge-neutral separation processes, and that this is a result of the high-ionization potential of helium.

The $^4\text{He}^{++}/^3\text{He}^{++}$ ratio in a solar prominence has been determined by Hall (1975). The value obtained was $2500 \pm 2500_{830}$ to be compared to 2350 ± 120 as measured in the solar wind by the Apollo foil experiments (Geiss et al., 1972). Even if we assume that the isotopic ratio in the prominence was representative for the outer convective zone, we note that the error on the first figure is so large that it is not possible to determine...
by direct comparison whether $^4\text{He}^{++}$ is systematically depleted relative to $^3\text{He}^{++}$ in the solar wind. Since the ionization potentials of ^3He and ^4He are virtually identical, such depletions would be entirely due to the difference in mass of the two isotopes.

(3) $^3\text{He}^{++}$, present in concentrations of a few parts in 10^5, is a true test particle in the solar wind, unlike $^4\text{He}^{++}$, which carries too high a proportion of the total momentum flux to fulfill this role. At the same time, $^3\text{He}^{++}$ is easily and cleanly isolated by the ICI mass spectrometer because it is the only species in the solar wind with a M/Q value between one and two. The $^3\text{He}^{++}$ ion is thus particularly well suited for use as a diagnostic particle.

The present investigation has been carried out both to arrive at a value of $^4\text{He}^{++}/^3\text{He}^{++} = \langle R \rangle$, averaged over a period of four years, and to study variations of $\langle R \rangle$ over periods between hours and months. The ISEE-3 orbit about the Lagrangian point between the Sun and Earth combined with the properties of the ICI ensure that $^3\text{He}^{++}$ can be measured almost continuously under most conditions in the solar wind; the most important exception is for flows with speeds in excess of 620 km s$^{-1}$. In a previous publication (Ogilvie et al., 1980a) we presented preliminary results based upon observations made between August and November, 1978 and March and August, 1979. The overall abundance ratio, $\langle R \rangle$ was $2.1 \pm 0.2 \times 10^3$ for that period, in agreement with the measurements made using the foil collection technique (Geiss et al., 1972). This paper reports both results of observations for extended periods, and observations of the behavior of the two helium ions associated with interesting changes occurring on the Sun and in the interplanetary medium. These provide evidence for the importance of coulomb interactions and for the occurrence of fractionation processes in the solar corona.

2. Instrumentation

The design, construction, and calibration of the ICI have been described by Coplan et al. (1978) and its modes of operation have been described in several publications of the group (Ogilvie et al., 1980a b; Kunz et al., 1983). Here we merely state that a M/Q spectrum over the range from 1.4 to 6.0 is observed with a resolution ($M/\Delta M$) of 20 to 30 every 30 min, during periods when the solar wind speed falls between 300 and 620 km s$^{-1}$, which is ≈ 90% of the time during the period studied here. The spectra are typically recorded at seven velocity intervals centered about the solar wind velocity. The resolution is sufficient to measure $^3\text{He}^{++}$ ($M/Q = 1.5$) in the presence of the much larger fluxes of protons and $^4\text{He}^{++}$ ($M/Q = 2$). Correction for the instrumental background is discussed in the next section.

Since this investigation covers a period of four years, a remark about long term stability is required. The detectors are channel electron multipliers (CEM), and they had recorded less than 10^{10} counts by the end of the period covered. The present background counting rate, 0.2 s$^{-1}$, does not differ appreciably from the background measured in the solar wind soon after launch. The construction of the detector housing incorporates two grids in front of the detectors; the first one is grounded and the second one is maintained...
at the potential of the CEM input to ensure that all secondary electrons are collected. Periodic checks were performed to monitor the counting efficiency by changing the CEM voltage and observing the counting rate. These checks indicate that the properties of the detectors have not changed, and since most of the results concern the ratio $^4\text{He}^{++}/^3\text{He}^{++}$, it is unlikely that long term changes in the instrument have influenced any of the variations discussed here.

3. Data Reduction

In the normal mode of operations, M/Q-velocity scans are routinely obtained twice per hour. After correction for instrumental background and detector dead time are made, the solar wind (helium) speed is calculated from parabolic fits to the data from the $^4\text{He}^{++}$ searches and scans, after weighting the counts with the inverse fourth power of the corresponding velocity to convert them to a quantity proportional to the distribution function. The $^4\text{He}^{++}$ temperature and density are then calculated by fitting to the data a maxwellian velocity distribution function convected at this speed and convoluted with the measured instrument function. Because of the low flux of $^3\text{He}^{++}$ ions, their bulk speed is not determined separately but is taken equal to that of $^4\text{He}^{++}$; the $^3\text{He}^{++}$ temperature is assumed to be $3/4$ of the $^4\text{He}^{++}$ temperature. These assumptions have been tested for these two ions and are generally satisfied (Ogilvie et al., 1980b). Various tests are incorporated in the reduction program to eliminate data of questionable validity, with the result that the uncertainty in an individual flux ratio R mainly results from the statistical uncertainty of the $^3\text{He}^{++}$ flux, typically $\approx 25\%$. The $^4\text{He}^{++}$ flux determination has a statistical uncertainty of a few percent. Because both helium isotopes are taken to have the same speed, flux and density ratios are the same. The average quantity $\langle R \rangle$, which is the sum of $^4\text{He}^{++}$ fluxes divided by the sum of $^3\text{He}^{++}$ fluxes, is directly comparable to the result of the foil collection method, in which helium atoms implanted in the foil are later released by heating and analysed by laboratory mass spectrometry.

![Sensitivity graph](image)

Fig. 1. The ratio of the sensitivity of the ICI to $^3\text{He}^{++}$ and $^4\text{He}^{++}$ ions as a function of the ionic velocity; data from laboratory measurements.
Figure 1 shows how the relative sensitivity of the instrument to $^{3}\text{He}^{++}$ and $^{4}\text{He}^{++}$ ions varies with solar wind speed; note that the sensitivity is uniformly greater for $^{3}\text{He}^{++}$ than for $^{4}\text{He}^{++}$, and the ratio varies smoothly between 1.6 and 2.8 with solar wind speed.

As an example of the observations, Figure 2 shows a plot of the measured $^{3}\text{He}^{++}$ flux, $^{4}\text{He}^{++}$ flux, and abundance ratio covering the period from August 18 to December 27, 1978. Hourly average values are plotted, and the data gaps crossed by straight line segments. This period was typical in that an almost complete time series of observations was obtained. Superposed on the point-to-point $^{3}\text{He}^{++}$ fluctuations, are slower variations which are seen to correlate well with those of the $^{4}\text{He}^{++}$ flux, whose statistical fluctuations are too small to be seen in Figure 2. It is clear that many of the variations shown in the lower trace in Figure 2 are statistically significant, and represent real physical changes in the isotopic constitution of the solar wind. However, because the dynamic range available for $^{3}\text{He}^{++}$ measurement is smaller than that for $^{4}\text{He}^{++}$ measurement, ratio changes caused by reductions in the $^{3}\text{He}^{++}$ flux must be carefully examined. On the right hand side of the top trace in Figure 2 there is a scale of counts, giving an approximate measure of the number of counts which go into the $^{3}\text{He}^{++}$ flux determination; $^{3}\text{He}^{++}$ flux levels below $10^{7}\text{ m}^{-2}\text{ s}^{-1}$ are characterized by signal/noise ratios less than unity, fluxes above that level are relatively accurately determined.

The uncertainty in R has both instrumental and statistical contributions. Among the instrumental contributions are calibration uncertainties, detector noise, and detector dead time. The calibration uncertainties are those associated with the determination of the sensitivity ratios plotted in Figure 1. From an analysis of the calibration procedure we estimate that the curve in Figure 1 is accurate to 10% or better over the full range of solar wind velocities. Detector noise is of the order of 0.2 count s$^{-1}$ and has remained

![Graphs](image-url)

Fig. 2. $^{3}\text{He}^{++}$ flux, $^{4}\text{He}^{++}$ flux, and $^{4}\text{He}^{++}/^{3}\text{He}^{++}$ flux ratios for the period August 18–December 27, 1978. The data are hourly averages with data gaps spanned by straight lines.
constant throughout the life of the experiment. Detector dead time corrections are routinely applied and are only significant for the highest $^4\text{He}^{++}$ fluxes which generally occur at low solar wind speeds.

Since the background count rate is not negligible compared to the $^3\text{He}^{++}$ count rate, the value of R depends directly upon an accurate knowledge of the background. For the present determinations, a separate background was obtained for each M/Q-velocity spectrum by averaging the counts in the M/Q channels ($M/Q = 1.45$ and $M/Q = 1.56$) adjacent to that for $^3\text{He}^{++}$ ($M/Q = 1.5$).

As an example take a typical case with 15 net $^3\text{He}^{++}$ counts and a total background of 3 counts. The statistical uncertainty is $\sqrt{18 + 3} = 4.6$. Under some circumstances the statistical uncertainty is considerably larger and we have rejected all data where the ratio of net $^3\text{He}^{++}$ counts to net background counts is less than 0.5, in addition to rejecting all data where the background exceeds five times the normal detector background. Periods having high background usually coincide with solar particle events, during which high-energy particles can penetrate the spacecraft and stimulate the detectors directly.

4. Long-Period Changes in $^3\text{He}^{++}$ Abundance

In this section of the paper we describe our observations of $^3\text{He}^{++}$ abundance averaged over the whole four-year period, which includes the maximum of solar cycle 21 in 1980. For convenience we have divided this period into eight intervals ranging in length from 100 to 184 days. The gaps in the data were due either to spacecraft tracking problems, solar proton events, or operation of the instrument in a mode in which observations of $^3\text{He}^{++}$ were not made.

Since large values of R can correspond to small $^3\text{He}^{++}$ fluxes, the background correction is especially important. Although we have excluded large solar proton events from the data the presence of small events could increase the uncertainty in R for those periods. However, the method used to determine the background, together with our policy of rejecting observations with signal/noise ratio less than 0.5, reduces the effect of such small events on the total data set.

Figure 3a shows a histogram of the distribution of values of R derived from the whole data set. The average value, $\langle R \rangle = 2050 \pm 200$, agrees extremely well both with the value of 2100 ± 200 obtained from the shorter data set (Ogilvie, 1980a) and with the results of previous determinations of ^3He abundance in the solar wind, using the foil collection technique $\langle R \rangle = 2350 \pm 120$ (Geiss et al., 1972). If the histogram of the total set is redrawn as a weighted distribution, using the $^3\text{He}^{++}$ count as weight for each individual observation, the most probable and average values remain the same, well within the error given, while the 'tail' towards high values of R is reduced.

Figure 3b shows a histogram of $1/R$ ($^3\text{He}^{++}/^4\text{He}^{++}$), included to emphasize the distribution of small values of R.

In Table I the observations of R are divided into eight roughly equal periods of six months duration. These cover the four-year interval from August, 1978 through June,
Fig. 3a. Histogram of the log of the flux ratios $^3\text{He}^+ / ^4\text{He}^+$ for the whole data set. The average value $\langle R \rangle = 2050 \pm 200$.

Fig. 3b. Histogram of the inverse flux ratio $^4\text{He}^+ / ^3\text{He}^+$ for the complete data set. This histogram emphasizes the data at high $^3\text{He}^+$ flux.

1982, and their relationship to the solar activity cycle is shown by the smoothed sunspot numbers in Table I. We see that during the four years the sunspot number rose from ~ 100 to a maximum of 160 in period 1980a, and then decreased to ~ 130 again. The

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results of 14,508 observations of the $^4\text{He}^+ / ^3\text{He}^+$ abundance ratio for eight six-month intervals from August 1978 to July 1982, 78b to 82a. $\langle R \rangle$ is the average value of R for each interval computed by dividing the sum of the $^4\text{He}^+$ fluxes by the sum of the $^3\text{He}^+$ fluxes. R_{MP} is the most probable value of R and corresponds to the value at the maximum of the distribution. The correlation coefficients between the $^4\text{He}^+$ and $^3\text{He}^+$ fluxes are given in the fifth column and the sunspot number for each period in the last column. The quantities given on the last line refer to the whole data set.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periods</th>
<th>Number of observation</th>
<th>$\langle R \rangle$</th>
<th>R_{MP}</th>
<th>Correlation coefficient</th>
<th>Sunspot number</th>
</tr>
</thead>
<tbody>
<tr>
<td>78b</td>
<td>1871</td>
<td>1970</td>
<td>1200</td>
<td>0.74</td>
<td>104</td>
</tr>
<tr>
<td>79a</td>
<td>2529</td>
<td>1920</td>
<td>1200</td>
<td>0.70</td>
<td>126</td>
</tr>
<tr>
<td>79b</td>
<td>1921</td>
<td>1950</td>
<td>1580</td>
<td>0.75</td>
<td>155</td>
</tr>
<tr>
<td>80a</td>
<td>603</td>
<td>2300</td>
<td>1500</td>
<td>0.68</td>
<td>160</td>
</tr>
<tr>
<td>80b</td>
<td>1461</td>
<td>2080</td>
<td>1500</td>
<td>0.73</td>
<td>148</td>
</tr>
<tr>
<td>81a</td>
<td>2545</td>
<td>2050</td>
<td>1500</td>
<td>0.69</td>
<td>140</td>
</tr>
<tr>
<td>81b</td>
<td>1951</td>
<td>2230</td>
<td>1500</td>
<td>0.73</td>
<td>140</td>
</tr>
<tr>
<td>82a</td>
<td>1627</td>
<td>2100</td>
<td>1400</td>
<td>0.65</td>
<td>128</td>
</tr>
<tr>
<td>Total</td>
<td>14,508</td>
<td>2050 ± 200</td>
<td>1500</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System
value of $\langle R \rangle$ deduced from the 14,508 observations with signal-to-noise greater than 0.5 and background less than five times normal, is 2050 ± 200. The rejection criteria were chosen as a way of eliminating data of questionable validity; however, since they also selectively eliminate low $^3\text{He}^{++}$ fluxes, they may have the effect of introducing a bias into our sample. The criteria are thus a compromise between the inclusion of unreliable data on the one hand and the introduction of bias into the data set on the other. The largest value of $\langle R \rangle$ over a six month interval is 2300, slightly more than one standard deviation above the overall value. This was measured during the period when solar activity was at its maximum. The variation between the two periods near solar maximum, when the sunspot number was $\sim 150–160$, and the earlier and later periods when the sunspot number was 110–120 gives a measure of the variability of $\langle R \rangle$ with solar activity. Although the effect is small, some events associated with solar activity, and therefore more common near solar maximum, apparently cause increases in the isotopic ratio $^4\text{He}^{++}/^3\text{He}^{++}$ in the solar wind. Comparison of the present data with monthly averages of A_p (Sugiura, 1983) indicates no significant coincident variations in the two quantities.

Figure 4 is a contour map of the correlation between the logarithms of the fluxes of $^3\text{He}^{++}$ and $^4\text{He}^{++}$. Because the uncertainties are mostly due to the $^3\text{He}^{++}$ statistical fluctuations, the observations are weighted by the number of $^3\text{He}^{++}$ counts as explained above. The contour lines connect points of equal density of weighted observations, and the increments between lines are given in the figure. The contours are pear shaped; at the higher fluxes the data lie in a narrow band about a diagonal; at lower fluxes the correlation is less strong. This may be intrinsic or the result of counting statistics. We have also plotted as single points the results obtained in the interplanetary

![Contour map of log(flux($^4\text{He}^{++}$)) vs log(flux($^3\text{He}^{++}$)). The contour intervals are marked on the figure. Five Apollo observations are also plotted and identified by the corresponding flight numbers (11–16).](image-url)
medium by the five Apollo foil experiments (Geiss et al., 1972); clearly, there is good agreement between the results of these very different techniques. The effect of the measurement times, up to 45 hr in the longest Apollo experiment, is to smooth the foil data, and there is accordingly less variability among the five Apollo observations than for the ICI data set.

In order to assess the influence of statistical fluctuations we have investigated a simple statistical model with a constant ratio \(R = 2300 \), and a log-normal distribution of \(^4\text{He}^{++} \) fluxes centered about a flux of \(8 \times 10^{10} \text{ m}^{-2} \text{ s}^{-1} \), with a threshold of \(5 \times 10^{+7} \text{ counts m}^{-2} \text{ s}^{-1} \) for \(^3\text{He}^{++} \).

We have convolved the flux distribution \(P_1(\log(\text{He}^{++} \text{ flux})) \) with \(P_2(n | \log(\text{He}^{++} \text{ flux})) \), the conditional probability to obtain \(n \) \(^3\text{He}^{++} \) counts at a given \(\log(\text{He}^{++} \text{ flux}) \). Since there is a definite relation between \(R, n \), and the \(^4\text{He}^{++} \) flux, we obtain \(P_3(\log R) \) by a transformation of variable \(n \) to \(\log R \) and evaluate the integral

\[
P_3(\log R) = \int_{-\infty}^{\infty} P_1(\log(\text{He flux})) P_2(\log R)(\log(\text{He flux})) \, d(\log(\text{He flux})).
\]

The distribution \(P_3 \) resembles a log-normal distribution with a tail towards high ratios, and a most probable value of 2300. The width of the distribution is 0.2, corresponding to a factor of 1.6 in \(R \), and much smaller than the width of the observed distribution. This indicates that counting statistics cannot account for the whole of the extreme values of \(R \) in the observed distribution. Additional uncertainties in the data procedure, such as errors in the individually determined background corrections, could add to the spreading, but not sufficiently to account for all of it. We therefore conclude again that

![Fig. 5. Integral probability of observing a given value of \(R \) as a function of the reduced flux ratio, \(R^* \). A straight line is indicative of a normal distribution. Data is shown for the whole data set, open circles, and for period 1980a, dots.](image-url)
there are values of R which are considerably different from $\langle R \rangle$ as a result of physical causes, and this evidence is supported by the time-coherence of such values.

Figure 5 shows the distribution of the whole data set of observations of R on normal probability paper. This type of plot emphasizes the extreme values of R (Gumbel, 1958). If the data were distributed normally they would lie on a straight line. It is clear that a normal distribution does not describe the observations well over the whole range of observed variability of R. A simple calculation shows that, with respect to counting statistics, the signal/noise ratio is less than 1 when $R \gtrsim 3500$. Thus, single values of $R > 5000$ are poorly determined, while lower values are relatively well known. Nonetheless, as already discussed, both high and low values usually represent 'real' fluctuations – those which can be related to changes in the isotopic abundance of helium in the solar wind.

In Table I we show the computed values of $\langle R \rangle$ and the most probable value R_{MP} of R for each of the eight sub-intervals, and in Figure 6 we show histogram plots for each of them. The histograms are remarkably similar within expected statistical fluctuations, except for the period around solar maximum, referred to as 1980a in the data set. As suggested earlier, a likely cause for the differently shaped histogram for this period, with a value of $\langle R \rangle$ somewhat more than one standard deviation above the

Fig. 6. Histograms of the distributions of R values for the eight periods detailed in Table I.
overall value of $\langle R \rangle$, is a small solar activity effect. Table I also shows values of the correlation coefficients between the $^3\text{He}^{++}$ and $^4\text{He}^{++}$ fluxes, calculated for each period. There are significant differences among the correlations, yet the average value of 0.72 indicates considerable coherence between the fluxes on a time scale of approximately 1 hr. A higher coefficient of correlation would be expected in the absence of statistical fluctuations, which are quite large for $^3\text{He}^{++}$. It is certainly to be expected that the two isotopes of helium should behave in the same general way, but that their behavior should sometimes differ because of their different mass. It is probably not accidental that a locally lower correlation occurs at solar maximum, indicating that during periods of high solar activity there are more corona-associated changes, in contrast to changes near the solar surface or dynamical changes in the interplanetary medium, which would be expected to affect both species in about the same way.

Figure 7 shows plots of autocorrelations of the logarithms of the fluxes of $^4\text{He}^{++}$ and $^3\text{He}^{++}$, derived from data smoothed over 3 hr. The correlation time is 14 hr for $^4\text{He}^{++}$, and it is 20 hr for $^3\text{He}^{++}$. It is remarkable that we obtain a larger correlation time for $^3\text{He}^{++}$ than for $^4\text{He}^{++}$, because the statistical fluctuations in the $^3\text{He}^{++}$ data should result in a shortening of the autocorrelation time. On the other hand, we cannot exclude that the selection criteria for $^3\text{He}^{++}$ could have lengthened its correlation time. Nevertheless, the difference between the autocorrelation curves of $^3\text{He}^{++}$ and $^4\text{He}^{++}$ could very well indicate that the $^4\text{He}^{++}$ flux shows stronger short-time variations than the

![Image](image_url)

Fig. 7. Plots of auto-correlations of log flux($^4\text{He}^{++}$) and log flux($^3\text{He}^{++}$) vs time lag. The quoted correlation times correspond to the times at which the autocorrelation coefficients decrease to 0.37 ($1/e$).
flux of other ions. The correlation time was also obtained for $\log(^4\text{He}^+ / ^3\text{He}^+)$, and is approximately 20 hr.

5. Variation of the Isotopic Ratio with Flux and Velocity

Figure 8a shows the $^4\text{He}^+$ flux in 25 km s$^{-1}$ intervals; it is constant to $\pm 10\%$ over the velocity range from 300 to 600 km s$^{-1}$. Since

$$\text{flux}(^4\text{He}^+ / ^3\text{He}^+) = \text{flux}(\text{H}^+) \times \text{relative abundance}(^4\text{He}^+)$$

and since the flux of hydrogen rises at low speeds, this implies that the abundance of helium is less at low than at high solar wind speeds, in agreement with the ideas of Hirshberg et al. (1972), and Borrini et al. (1983).

In Figure 8b we show values of $\langle R \rangle$ using the whole data set exhibited as a contour plot. Above ~ 375 km s$^{-1}$ $\langle R \rangle$ is nearly constant at about 2000 below that speed there is an apparent rise to values of order 3000. We now discuss whether this rise could be due to an instrumental effect.

A possible cause of an apparent change in $\langle R \rangle$ at low speeds could be violation of the assumption $T(^3\text{He}^+) = \frac{2}{3}T(^4\text{He}^+)$, which is made in the course of data reduction. This assumption is based on the proportionality of kinetic temperature to mass, which often holds in the solar wind (Schmidt et al., 1980; Ogilvie et al., 1980a).

![Fig. 8a–b. (a) $^4\text{He}^+$ flux as a function of a solar wind speed for the full data set. (b) Contours of $\langle R \rangle$ as a function of solar wind speed for the full data set.](image-url)
However, coulomb collisions destroy this proportionality and result in a trend towards a single kinetic temperature for all species. Such collisions occur predominately at high densities, and thus low speeds. Since the mass ratio is small, one expects temperature effects to be small – calculations confirm this, and the effect cannot account for the observed change in \(\langle R \rangle \) with velocity. A correction has been made to the data to remove the variation in instrument function with mass per charge and velocity. Although this correction is largest at low speeds, Figure 1 shows that it is small compared with the effect shown in Figure 8b and its onset is not so rapid. Thus the increase in \(\langle R \rangle \) at low velocities is difficult to explain as purely instrumental.

Geiss et al. (1970) have considered the question of the acceleration of minor ions into the solar wind as a result of coulomb drag between them and the protons in the low corona. They introduced the idea of a minimum proton flux required to incorporate an ionic species into the solar wind, and pointed out that the highest minimum flux for elements lighter than iron is required for the acceleration of \(^4\text{He}^{++}\). \(^3\text{He}^{++}\), however, requires a minimum flux only \(\sim 60\% \) that of \(^4\text{He}^{++}\), not appreciably different from that required for other ionic species. The model of Geiss et al. (1970), was extended by Borrini and Noci (1979), to non-radial expansion. Hollweg (1981), used an isothermal approximation and obtained very similar relations for the minimum fluxes of these ions. Clear evidence of a correlation between the abundance of any species and the proton flux has not been obtained. This was foreseen by Geiss et al. (1970), and is because the solar wind flux is a function of many parameters, and also because material observed at 1 AU could be a mixture from various flow tubes connected to various coronal positions (Bochsler, 1983). Strictly speaking, the steady-state models investigated by Geiss et al. (1970), do not necessarily apply to the real solar wind, where different layers in the corona may not have reached the steady state equilibrium.

Because the isotopes of helium differ only in mass, many effects which would cause variations with solar wind flux of the abundance of a single ion do not affect the variation of the ratio \(R \). Thus it is worthwhile to study the variation of \(\langle R \rangle \) with the flux of protons in the solar wind, illustrated for the present data set in Figure 9, where the proton flux was obtained from the ISEE-3 data pool tape. There is a tendency for high

![Fig. 9. \(\langle R \rangle \) as a function of proton flux (from ISEE-3 data pool tape).](image_url)
ratios to coincide with high fluxes, and low ratios with the lowest fluxes, although there are few observations in the lowest category. This indication that low values of \(\langle R \rangle \) coincide with low proton fluxes provides substantial evidence for the importance of coulomb collisions in the acceleration process, and is consistent with the suggestion of Geiss et al. (1970), that \(^4\text{He}^{++}\) requires significantly higher fluxes to accelerate into the solar wind than \(^3\text{He}^{++}\).

6. Daily and Hourly Variations

The variability of the relative density of \(^4\text{He}^{++}\) ions in the solar wind has never been adequately explained (Neugebauer, 1981) although it most probably has its origin in the acceleration processes. Variations over periods of hours and days are pronounced in the \(^3\text{He}^{++}\) and in the \(^4\text{He}^{++}\) flux. For example, Grünwaldt (1976), describing observations made by the plasma instrument of the HEOS-2 spacecraft, reported a 48 hr period of particularly low solar wind speed (<300 km s\(^{-1}\)) during which the value of \(R \) remained at about 540 as a result of the reduction in the \(^4\text{He}^{++}\) flux. The histograms in Figures 3 and 6 show that such a value of \(R \) is not exceptional, and we have shown that the flux \(^3\text{He}^{++}\) varies more at low than at high speeds; however 48 hr is a long period of time for such a deviation from the most probable value to persist.

In studying variations on a daily or hourly time scale with the present data set, for which the \(^4\text{He}^{++}\) flux is much better determined than the \(^3\text{He}^{++}\) flux, we will not attempt to interpret gross correlations, but will measure variations of the \(^3\text{He}^{++}\) flux at times close to the occurrence of known variations of the \(^4\text{He}^{++}\) flux.

One well documented variation of this class is that observed when the spacecraft passes through the solar equatorial current sheet at a sector boundary. The current sheet is identified by Howard and Koomen (1974) and Gosling et al. (1981) with the crossing of a coronal streamer, within which there is dense, slowly flowing plasma having a low helium abundance, \(n_e/n_p \), observed at the same time as the magnetic field reversal.

Borrini et al. (1981) have made a superposed epoch analysis of proton density, velocity and temperature, and helium abundance, temperature ratio and velocity difference at 74 well defined sector boundaries from the Los Alamos IMP-6, 7, and 8 data sets. They found that the helium abundance (\(^4\text{He}^{++}\) predominately) dropped sharply at the time of the boundary crossing. The temperature ratio also showed a drop from \(\sim 5 \) to \(\sim 3 \). They interpreted their result as a coronal signal, providing evidence for gravitational fractionation in the corona, in agreement with the interpretation of helium enhancements in the driver gas of flare associated interplanetary shocks. Such enhancements are generally believed to characterize \(^4\text{He}^{++}\)-rich material from the lower corona expelled into the interplanetary medium as a result of the flare process (Hirshberg et al., 1970). Borrini et al. (1981) hypothesized that the abundance of helium decreases with height in the solar corona, and becomes fixed at a greater height in a streamer than elsewhere. If this is true one might expect that the ratio

\[
R = \frac{n(4\text{He}^{++})/n(H^+)}{n(3\text{He}^{++})/n(H^+)}
\]

would show a change as the boundary is crossed, since at that point the streamer is being sampled.
We have investigated this matter using observations taken at the times of 17 clear sector boundary crossings in 1978, 1979, and 1981, taking zero epoch as the time of boundary crossing as given by the magnetometer (Interplanetary Medium Data Book, Supplement 2, 1983). In order to reduce statistical errors, we have included both stream-associated and stream-free events in our data set. The results are shown in Figure 10, where we plot the $^4\text{He}^{++}$ flux, and $^3\text{He}^{++}$ flux and the ratio R for ± 3 days about the zero of time. Borrini et al. (1981) show, in their Figure 7, that the proton density increases by approximately 3.5 times around zero time, while n_α/n_p decreases from 4.5 to 3%. Thus the helium density increases by about 2.3 times, and the flux by about 2 times over its value prior to the sector boundary crossing, in agreement with the plot in Figure 10. At the zero of time both $^4\text{He}^{++}$ and $^3\text{He}^{++}$ fluxes increase, the latter by a smaller amount so that R increases to ~ 4000. Note also the similar increase of R in the low speed region preceding the boundary crossing. Although of limited

![Graph](image-url)

Fig. 10. Superposed epoch analysis for 17 well-marked sector boundaries. Top trace: R; middle trace: $^3\text{He}^{++}$ flux; lower trace: $^4\text{He}^{++}$ flux. The zero of time is the time of the change in magnetic field azimuth. Both stream-associated and stream-free events are included.
accuracy, the observations discussed here are in agreement with the overall rise in $\langle R \rangle$ at speeds below 360 km s$^{-1}$ shown in Figure 8b.

We now consider occurrences of periods of abnormally low values of R, defined for our purposes as sustained observations of $R < 1000$. We have searched the data set, in the form of plots of solar wind speed, $^4\text{He}^{++}$ density, R, and $^4\text{He}^{++}$ temperature, and find that in 15 out of at least 19 cases, such decreases of R were associated with streams having two velocity maxima, probably compound streams (Ogilvie and Burlaga, 1974). Figure 11 shows four examples of the effect; at the time of the second velocity maximum, there is a drop in $^4\text{He}^{++}$ density, so that the drop in R results from a smaller decrease in $^3\text{He}^{++}$ than in $^4\text{He}^{++}$. We have been unable to explain this effect as instrumental. A more quantitative study will be required to understand the causes of these variations, but meanwhile we point out that the interaction of two high-speed flow systems may be involved, and that the variation might therefore be produced in the interplanetary medium rather than in the corona.

We now consider the question of whether the $^3\text{He}^{++}$ abundance in the solar wind is affected by the occurrence of so-called ^3He flares. These are small solar flares, which cause the observed flux of $^3\text{He}^{++}$ in the MeV/nucleon energy range to be increased by as much as 10^3 (Hsieh and Simpson, 1970; Garrard et al., 1973; Reames and von Rosenvinge, 1981). There are sometimes coincident increases in the Fe/He ratio at MeV/nucleon energies. Theories of this effect have invoked both nuclear reactions and heating of $^3\text{He}^{++}$ by waves, excited by an instability in the coronal plasma, which resonate with the cyclotron frequency of $^3\text{He}^{+}$ (Ibragimov and Kocharov, 1977; Fisk,

Fig. 11. Some events during which the value of R decreased to below 1000. Note that all are associated with the leading edges of compound streams, and coincide with large drops in the density of $^4\text{He}^{++}$.
Fig. 12. Solar wind data for the 3He flare of November 10, 1980. The horizontal axis was established by taking into account the transit time of the solar wind. Interval B is the period of the flare. Periods A and C of duration equal to the flare were used for comparison purposes. The broken horizontal lines spanning the three intervals for 4He $^+$ and 3He $^+$ are at the average values for the periods.

TABLE II

Results from the four observed 3He events; the quoted errors are statistical only, derived from the number of counts in each category. The ICI data were corrected for the transit time of the solar wind. Although in each case the 4/3 ratio is lower around the corrected flare time than at adjacent times, this decrease is not statistically significant, except for the March 23 flare for which the fluence is small.

<table>
<thead>
<tr>
<th>Date</th>
<th>Fluence at \sim 1 MeV/nucleon m$^{-2}$ ster$^{-1}$ (MeV/nucleon)$^{-1}$</th>
<th>4/3 ratio for flare interval</th>
<th>4/3 ratio for adjacent intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 3, 1978</td>
<td>3884×10^4</td>
<td>1300 ± 250</td>
<td>1520 ± 150</td>
</tr>
<tr>
<td>May 17, 1979</td>
<td>5118×10^4</td>
<td>1600 ± 500</td>
<td>2100 ± 150</td>
</tr>
<tr>
<td>November 9, 1980</td>
<td>16738×10^4</td>
<td>1600 ± 120</td>
<td>2028 ± 200</td>
</tr>
<tr>
<td>March 23, 1981</td>
<td>2211×10^4</td>
<td>1890 ± 200</td>
<td>3970 ± 500</td>
</tr>
</tbody>
</table>

1978). If either of these processes change the composition of material in the solar wind acceleration region, a change of 3He $^+$ flux might be detectable at 1 AU. Using a list of 3He flares observed in the energy range 1.3 to 1.7 MeV/nucleon, kindly supplied by Reames (1982) four events were selected for which there were no coincident solar proton enhancements. Figure 12 shows the solar wind data for the 3He flare of November 10,
1980. In plotting the data the transit time of the solar wind has been taken into account by dividing the sun-spacecraft distance by the measured solar wind speed for each determination. Interval \(B \) is the period of the flare. The data from intervals \(A \) and \(C \), of duration equal to interval \(A \), were used for comparison purposes. The broken horizontal lines spanning the three intervals for both \(^4\text{He}^{++} \) and \(^3\text{He}^{++} \) are the average values for those periods. If the process responsible for the enhancement of \(^3\text{He} \) at MeV energies also, for example, enhanced \(^3\text{He}^{++} \) in the solar wind, we would expect a decrease in \(\langle R \rangle \) during the period of the flare. Table II shows the results for all four flares. Although there is a small decrease in \(\langle R \rangle \) during the flare time, it is less than the standard deviations of the observations.

7. Conclusions

We have shown that the long term average \(^4\text{He}^{++}/^3\text{He}^{++} \) ratio is in good agreement with the average derived from the five foil collection experiments, and that there is a small variation with solar activity which appears to be significant. Both increases and decreases of \(R \), resulting from events on the Sun and in the interplanetary medium, do occur, and their frequency appears greater near solar maximum than near solar minimum. Overall, the fluctuations in the isotopic fluxes are only moderately well correlated (0.72). Because of this and the properties of the distributions, we conclude that statistical fluctuations due to the low \(^3\text{He}^{++} \) counting rate are not primarily responsible for the long tails in the histograms shown in Figure 3, but that there are real though poorly determined fluctuations. Investigating the variation of \(R \) with solar wind speed indicates that \(R \) remains more nearly constant above than below \(\sim 400 \, \text{km s}^{-1} \). Bame et al. (1977) showed that the high-speed solar wind is different from the low-speed wind, whose source regions are less certain, and in some respects more fundamental. According to this picture (Howard and Koomen, 1974; Borrini et al., 1983), the source of most of the low-speed wind is coronal streamers. Figure 8a shows that the abundance of helium is lower at low speeds than at high speeds, and Figure 8b indicates that the abundance of \(^3\text{He}^{++} \) drops more than that of helium \(^4\text{He}^{++} \) at these times. Not all the high speed solar wind observed here was associated with coronal holes, however, as the present data was taken under relatively disturbed conditions around solar maximum, while the observations of Bame et al. (1977) were taken during the years of decreasing solar activity, 1971–1974. Taking our value of \(\langle R \rangle \) in high-speed flows \((1900 \pm 200) \) and the Bame et al. (1977) value for \(n_e/n_p \), of \(0.045 \pm 0.005 \) we obtain a relative abundance for \(^3\text{He}^{++} \) of \(2.4 \pm 0.2 \times 10^{-5} \) in these flows.

Autocorrelations were computed for the logarithms of both the \(^3\text{He}^{++} \) and \(^4\text{He}^{++} \) fluxes, and the results show that the correlation times are consistent with the expected dimensions of sources of particular 'parcels' of solar wind which rotate with the Sun past the spacecraft point.

We have also found that there are periods of low \(R \), at the time of compound streams, which are associated with drops in \(^4\text{He}^{++} \) flux. Because of the correlation with streams,
the low R values could be due to interactions in the interplanetary medium and not to changes at the source.

Turning to shorter period variations, we have investigated the changes in $^3\text{He}^{++}$ at magnetic sector boundary crossings. Using the results of Borrini et al. (1981) and making a superposed epoch analysis, we find an increase in $\langle R \rangle$ with a maximum just before the boundary crossing. At the sector boundary crossing the rise in $^4\text{He}^{++}$ flux is greater than that of the $^3\text{He}^{++}$ flux. The increase of R occurs throughout the period of low speed adjacent to the crossing.

Figure 9 shows the variation of $\langle R \rangle$ with proton flux for the subset of data for which proton parameters are available from the ISEE-3 data pool tape. Direct investigations of a correlation between proton flux and the abundance of $^4\text{He}^{++}$ in the solar wind have been unsuccessful because of the many interfering phenomena which affect the measurements. However, the abundance ratios are less subject to difficulties of this nature and the result shown in Figure 9 provides some indirect evidence that coulomb collisions with protons are important in the acceleration of $^4\text{He}^{++}$, and presumably other ions, to form the solar wind. This does not explain the general increase of $\langle R \rangle$ at low speeds, Figure 9, since although high proton fluxes occur at the lowest speeds, the $^4\text{He}^{++}$ flux does not increase at low speeds; $\langle R \rangle$ changes because the $^3\text{He}^{++}$ flux drops.

The sector boundary observations also show that the increase in the proton flux is accompanied by an increase in $^4\text{He}^{++}$ flux; there is less change in the $^3\text{He}^{++}$ flux. We suggest that the $^4\text{He}^{++}$ flux is controlled by the acceleration mechanism, which draws flux from a reservoir, possibly provided by gravitational fractionation. The $^3\text{He}^{++}$ flux is controlled by the characteristics of the source, which is different for low speed and high speed solar wind. At low speeds the proton flux increases, $\langle R \rangle$ rises (Figure 9), the $^4\text{He}^{++}$ flux changes little but the $^3\text{He}^{++}$ flux falls to a value similar to that observed at a sector boundary.

These results suggest that $^4\text{He}^{++}$ is definitely anomalous, both because it has low coulomb drag per unit mass, and because it is subject to mass fractionation. $^3\text{He}^{++}$, on the other hand, appears to be easily removed from the corona by common solar wind proton fluxes, but its supply to the slow solar wind may be restricted compared to the supply to the fast wind. Following ideas of Pneuman and Kopp (1970), Borrini et al. (1983) have suggested that all slow solar wind comes from coronal streamers. Since the values of $\langle R \rangle$, $^3\text{He}^{++}$ flux, and $^4\text{He}^{++}$ flux are the same within the present uncertainties for streamers and for slow solar wind, this suggestion cannot be ruled out and should be investigated further.

Acknowledgements

The authors wish to acknowledge useful discussions with L. F. Burlaga, E. W. Montroll, M. Schlesinger, and M. Dozzi. Partial support through NASA Grant NAS 5-25472, the Computer Science Center of the University of Maryland and the Swiss National Science Foundation is gratefully acknowledged.

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System
References

