Session 35: The Sun
0930–1130 (Beam Hall 241)

35.01 Resonances of Solar Spicules, J.V. Hollweg, UNH, A.C. Sterling, UNH.

We consider the propagation of Alfvénic twists on solar spicules. We show that spicules can act as resonant cavities, and that the energy flux into the spicule can be dramatically enhanced in the vicinity of the resonant frequencies. We suggest that the resonances may account for the observed ‘rotation’ of spicules. We also suggest that the energy can be dissipated via a Kolmogorov turbulent cascade, mediated by Kelvin–
Helmholtz instabilities. The predicted heating rate is enough to ionize the spicule, thus accounting for the tendency of Hα spicules to fade. The heating can also raise the spicule to EUV-emitting temperatures.

34.11 Bipolar Flows in Dark Clouds.
M. Hendon-Weber, P. F. Goldsmith, R. L. Shell, U. Mass., W. D. Langer, Princeton University. Using high resolution (48") maps of the J=1→0 12CO transition obtained with the Five College Radio Astronomy Observatory 4m telescope, we investigate the morphology of three sources suspected of containing high velocity gas. Two of the three sources (B335, L723) are found to exhibit highly collimated bipolar structure. In the third object (L1455), we have detected the presence of two separate bipolar outflows. Positions of peak emission of high velocity gas in the red and blue lobes of B335 and L723 are offset from the central position of the outflow indicating the existence of a cavity swept out by a wind from a young stellar object. We introduce an emission-weighted distance from the central position and find that this distance is independent of velocity in the high velocity emission. This result indicates that the distribution of emitting gas is not highly dependent on velocity; this is consistent with a model in which the high velocity emission arises primarily from accumulated gas found at the ends of the cavity. Research at the Five College Radio Astronomy Observatory is supported by NSF Grant 82-12252.

34.12 Star Cloud Turbulence. B.N. Henriksen, Queen's Univ., B.E. Tonne, N.R. A.O.

The recent discovery by Larson (1981) and by Myers (1983) of systematic correlations between density, characteristic velocity, mass, and scale of galactic molecular clouds has produced evidence for a kind of turbulent cascade in a cloud complex (e.g. Fleck, 1981). We give a general argument for deducing the nature of this turbulence (which must be gravitationally driven and coupled and compressible) and compare our results with observation. We are able in particular to deduce self-consistently the time evolution of the cloud complex, and consequently to estimate the mass of the stars forming at a given age of the cloud complex. Some comments will be made on the nature of the predicted IMF.

35.02 The Magnetic Field as a Function of Depth in a Sunspot Umbra, J.B. Gurman, ARC/NASA. Extending the weak-field approximation of Umino (1965, Publ. Astron. Soc. Japan, 17, 108) to the wings of a strong line, it is possible to map circular polarization to longitudinal magnetic field as a function of wavelength. Using an atmospheric model that synthesizes the observed intensity profile, this mapping can be further extended to longitudinal field as a function of continuum optical depth, and, thus, as a function of geometric height. Observations of the Na I D lines obtained with the solar Fourier Transform Spectrometer at Kitt Peak National Observatory have been analyzed in this manner; the results are compared with more traditional methods of determining B/δh in sunspot umbrae.

*Visiting astronomer, Kitt Peak National Observatory

35.03 The Effect of Closed Boundary Conditions on the Solar Dynamo, A.R. Choudhuri, U. Chicago.

Solar magnetic cycles are usually modelled by solving the \(\alpha \omega\)-dynamo equations in the convection zone with \(B_0 = 0\) at the outer boundary. Such models give a rather low period of 1.5–6 years for the magnetic cycle of the sun, when one uses conventional estimates of the turbulent diffusion \(\gamma \approx 10^{-4}\) with \(v \approx 1\) km/sec, \(L \approx 10^{15}\) kms.

Parker analysed recent observational data to point out that the appropriate magnetic boundary condition at the solar surface appears to be \(\delta B_\perp = 0\) rather than \(B_\perp = 0\), in that little or no net flux is observed to escape through the surface. We solve the \(\alpha \omega\)-dynamo equations for both boundary conditions in a slab and find that for situations similar to the solar dynamo, the period increases by a factor 2.11 when the boundary condition is changed from \(B_\perp = 0\) to \(\delta B_\perp = 0\), substantially increasing the period toward the observed 22 years.

© American Astronomical Society • Provided by the NASA Astrophysics Data System