ABSTRACTS

19.12 Ultraviolet Spectroscopy of the 1981 Eclipse of 32 Cyg. K.E. STENGEL, JILA, D. of Colo. & NBS, R.B. CHAPMAN, Y. KONDO, NASA-Goddard, and R.F. WING, Ohio State University. An outstanding data set consisting of high and low resolution observations was obtained during 16 separate epochs of the March-April 1981 eclipse of the Zeta Aur system, 32 Cyg (KS Ib + B5 V). From these data, the following information is derived: a) variation in the continuous opacity as deduced from the minimum wavelength of the detectable continuum during eclipse phases; b) evidence for systematic flows in the K supergiant atmosphere as deduced from time dependent changes in the absorption and emission components of the Mg II lines; c) time dependent changes in the emission spectrum during eclipse to compare with the Zeta Aur eclipse observations and conclusions (Stencel & Chapman 1981 Ap. J. Dec. 15) regarding the origin of the sub-coronal lines, and to relate variations to the optical photometry by E. Guinan which suggests tidally-driven pulsations in the K supergiant; d) from curve-of-growth analysis of over 1000 Fe II and Fe I lines, chromospheric temperatures are shown to extend several K star radii, in agreement with extrapolated optical studies and supporting recent empirical evidence that extended chromospheres are ubiquitous red giant features. We will discuss progress on models for the system which include the source of the high speed wind flows and the phase related variations. This work will ultimately appear in the Ap. J. Supplement Series. We thank T.R. Ayres, G.S. Basri and D.J. Mullan for assistance in obtaining some of the observations.

19.14 Occultation Angular Diameters of R Auri by Least Squares and Deconvolution. NATHANIEL M. WHITE and TOBIAS J. KREITEL, Lowell Observatory. Angular diameter results are compared for two analysis techniques applied to lunar occultation observations of the K giant R Aur. The iterative least-squares model-fitting procedure and the Scheuer deconvolution method were applied to seven independent observations in ten different colors. The observations were made at the Lowell Observatory between 1978 and 1980.

19.15 Historical Astronomy Division/AAS Session 20: General History

Historical Astronomy Division/AAS Session 20: General History

0930–1200 (UMC 157)

20.01 Variable Stars and Cosmological Speculation in the Century after Descartes. W. ASHMORTH, U. Missouri – KC. The effect of the nova of 1572 on the undermining of Aristotelian cosmology is well attested. Not so well understood is the role of novae and (once discovered) periodic variables in building up new cosmologies in the wake of the Aristotelian demise. Descartes was the first to make extensive use of novae, arguing that they were not only evidence for the death of stars, but could explain the origin of comets and planets, and his followers, such as Fontenelle, Maupertuis, and De Maîtrel, attached great significance to changes in the stars. Newton, on the other hand, with visions of a more stable cosmos, was less impressed with variables, and he and his followers generally tried to downplay their significance. Perhaps surprisingly, by the middle of the 18th century the attention given to variables had greatly diminished, and they played only a minor role in the three great cosmological systems of Kant, Wright, and Lambert. This was partly a result of the ascendancy of Newtonianism, partly because new variable or nova had been identified since 1704, but mostly because a new phenomenon had been discovered which was considered far more significant as an indicator of cosmic structure and evolution, namely the proper motion of stars.

© American Astronomical Society • Provided by the NASA Astrophysics Data System