most active regions containing large, dominant spots. These flows are primarily horizontal with average velocities of 5-10 km s⁻¹. The velocity patterns reverse between east and west hemispheres on the sun.**

*High Altitude Observatory/National Center for Atmospheric Research**

Applied Research and Systems

Teledyne Brown Engineering

The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation.

51.08 Thermal Bifurcation in Solar Calcium Plages

T.R. Ayres,† LASP, U. of Colo., J.L. Linsky,‡ JILA, U. of Colo. & NSR, L. Tserenmaa and J. Bradt, KPMO,‡ discuss some of the implications of simultaneous, co-spatial measurements of Ca II 3934 A (K) emission and 2.4 μm carbon monoxide absorption in a variety of solar active and quiet regions. The observations were obtained at very high spectral resolution and excellent S/N utilizing the 1-meter Fourier Transform Spectrometer of the KPNO McMath Solar telescope in a novel dual-detector mode. Our observational objective was to measure at the same time and at the same position on the solar disk two thermal diagnostics that exhibit opposite sensitivities to local plasma conditions. In particular, the emission core and damping wings of the near ultraviolet resonance lines of Ca II respond preferentially to the hotter components of an inhomogeneous atmosphere, while the infrared vibration-rotation bands of the CO molecule are formed preferentially in the cooler components. Our interpretive goal was to establish, by the behavior of the complementary thermal diagnostics, the degree of atmospheric inhomogeneity within magnetic active regions. In particular, the two leading inhomogeneous descriptions of plages — the mild, uniform perturbation approach and the extreme thermal bifurcation of the flux-tube scenario — predict very different amounts of weakening for the CO absorption bands in plages of increasing Ca II K-line intensity. Unfortunately, the actual observations appear to be incompatible with both of the competing models. Some preliminary progress in resolving the Ca II–O dilemma will be presented.

This work was supported in part by NASA through Grant NGL-06-003-057 to the University of Colorado.

†Guest Observer, Kitt Peak National Observatory.
‡Staff Member, Quantum Physics Division, NSR.
§Operated by AURA under contract to NSF.

51.09 The Structure of a Force Free Magnetic Flux Tube

Wehr, K.A., Antiochos, S. K., Sturrock, P. A., Stanford University

An attempt is made to model the magnetic field configuration of a force free solar flux tube. A constant radius of curvature and toroidal symmetry are assumed. It is also assumed that the radius of the tube is small compared to its radius of curvature. An extension of the much explored case of a straight, isolated, magnetic flux tube is made by a perturbation technique, where the expansion parameter used is the ratio of the radius of the tube to its radius of curvature. It is found that a twisted magnetic flux tube of finite curvature, unlike its straight counterpart, must have a nonzero radial magnetic field component. A relation between the magnetic energies of the poloidal and toroidal components of the field is derived for a tube confined by a constant external gas pressure. The implications for a sub-photospheric flux tube are discussed.

© American Astronomical Society • Provided by the NASA Astrophysics Data System