ADDENDUM

In the paper "Detection of Mass Loss in Stellar Chromospheres" by R. E. Stencel and D. J. Mullan (Ap.J., 238, 221 [1980]), the ratios S/L of the intensities of shortward and longward emission peaks in the Mg h and k lines may in some cases be contaminated by interstellar absorption. The mean effect of this absorption is to decrease (increase) S/L relative to the intrinsic value in stars with positive (negative) radial velocity, \(V_r \). To circumvent this effect, we now restrict our sample to include only stars which satisfy either \(V_r > 0 \) and \(S/L > 1 \), or \(V_r < 0 \) and \(S/L < 1 \). This reduces our sample to 19 stars. In the H-R diagram, the figure shows how the S/L ratios are distributed for this subset of our original sample. (The half-filled circle denotes \(\alpha \) UMa, where we cannot distinguish S/L from unity.) The dashed line is our estimate of the dividing line between stars with large mass outflow (S/L < 1) and those without large mass outflow (S/L > 1). This new dividing line is somewhat less extensively delineated than in the original sample, and is shifted somewhat to the blue in the diagram relative to the original estimate. The main point in the figure, however, is that the division between the two groups of stars is much cleaner than in the original Figure 2. This strengthens the arguments presented in the original paper. Furthermore, the new dividing line lies even closer to the LH temperature dividing line than the original did.

We thank Dr. E. Böhm-Vitense for a preprint on the interstellar effects.

Fig. 1.—Asymmetry in emission peaks in the Mg h and k lines as a function of position in the H-R diagram. Compare with Fig. 2 of the original paper. The quantity \(V_r \) denotes stellar radial velocity. The dashed line is our estimate of the locus along which S/L changes from >1 to <1.