Hα PROFILES FROM ELECTRON-HEATED SOLAR FLARES

JOHN C. BROWN
Dept. of Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland

RICHARD C. CANFIELD
Dept. of Physics, University of California, San Diego, La Jolla, Calif. 92093, U.S.A.

and

MATTHEW N. ROBERTSON
Dept. of Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland

(Received 29 September, 1977; in revised form 4 January, 1978)

Abstract. We briefly review the status of models of optical flare heating by electron bombardment. We recompute Brown's (1973a) flare model atmospheres using considerably revised radiative loss rates, based on Canfield's (1974b) method applied to Hα, La, and Hβ. Profiles of Hα are computed and compared with observation. The computed profiles agree satisfactorily with those observed during the large 1972 August 7 flare, if spatial and velocity inhomogeneities are assumed. The electron injection rate inferred from Hα is one order of magnitude less than that inferred from hard X-rays, for this event. This may be due to either (1) the neglect of a mechanism that reduces the thick-target electron injection rate or (2) failure to incorporate important radiative loss terms.

1. Previous Work

Over the last decade or so there has been considerable enthusiasm for the idea that energetic electrons (in the 10–100 keV range) may be a primary product of the energy release in many solar flares, their collisional degradation in the atmosphere resulting in the various flash phase thermal phenomena (optical, UV and soft X-ray emission and the onset of mass motions) as secondary products. The evidence for this suggestion in terms of the total energy of the electrons and the synchronism between the various thermal and non-thermal emissions has been reviewed by several authors (e.g. Brown, 1973a, 1975, 1976; Hudson, 1973; Kane, 1974; Lin, 1975). Detailed theoretical models have been developed (see these reviews for references) to predict the structure of various regimes in the solar atmosphere where the electron input appears in the energy equation together with thermal conduction and radiative losses. In the high temperature regime conduction is dominant and Shmeleva and Syrovatskii (1973) have obtained a steady state description of its temperature structure, and also of that in the UV flare where radiation becomes important. Recently some quantitative work has begun (Craig and McClymont, 1976; Kostyuk and Pikel’ner, 1975; Kostyuk, 1975, 1976) on the role of mass motions.

In the low temperature (chromospheric) flare mass motions undoubtedly still play an important role. However, optical depth effects also become significant.
there, adding to the complexity of numerical modeling. Brown (1973a) calculated steady state chromospheric models with a simplified Lyman-continuum radiative-loss method. There are two areas in which Brown's (1973a) calculations obviously could be improved: (1) convection and conduction; (2) radiative losses. Kostyuk and Pikel'ner (1975) and Kostyuk (1975) did only the former; here, we do only the latter.

In this paper we amend Brown's (1973a) models, maintaining the steady-state, constant-pressure electron-input, radiative-output approximation for the optical flare, but taking into account Canfield's (1974a) criticisms of Brown's radiative losses. We are thus assuming that heating increases gradually enough to permit a steady state radiative solution but still on a time scale shorter than that for arrival of heat flux conducted from the corona, cf. next section. Canfield (1974a) computed the Hα profiles expected from Brown's (1973a) models and found major discrepancies with observations. Pursuing this, Canfield (1974a) then found that Brown had overestimated the hydrogen radiative losses by up to two orders of magnitude. Brown omitted the radiative input of the Balmer continuum from the photosphere in his energy equation, though including it in his ionization equation, thus overestimating the radiative loss rate. The Lyman continuum radiative output was obtained by reducing the optically thin output by \(\exp(-\tau_{Ly-c}) \), which we now view as overly simplified. Methods were then developed by Canfield (1974b, c) to allow a relatively simple method for radiative losses in lines. Subsequent work (in progress) has shown that the situation is more complex than originally stated by Canfield (1974a). Due to a numerical error, Canfield (1974a) found that hydrogen continuum radiative losses were much less than hydrogen line losses. In fact, these subsequent calculations show hydrogen continuum cooling to be sometimes comparable to line cooling, and sometimes greater. Interestingly, they also show regions dominated by continuum heating. Because of these findings, we view the present models as an evolutionary improvement upon previous work, but consider it likely that further improvements will result from still more complete treatments of radiative aspects of the problem.

2. Solution of the Energy Equation

Hard X-ray burst observations are consistent with a flare electron spectrum of approximately power-law form above about 20 keV. If such electrons are injected downward into the chromosphere (thick target model) the injection rate \(F(\text{electrons s}^{-1}) \) and spectral index are given from the hard X-ray observations by the expressions in Brown (1975). When the electron energy flux above 20 keV is \(F_{20} \) the rate of collisional energy deposition at a total hydrogen (atoms plus ions) column depth \(N \) cm\(^{-2}\) into the atmosphere is (cf. Brown, 1973a)

\[
Q(N) = 1.7 \times 10^3 F_{20} B_4 (\delta/2, \frac{3}{2}) \left(\frac{6 \times 10^{19}}{N} \right)^{\delta/2} \text{erg g}^{-1} \text{s}^{-1},
\]

\((1) \)
where δ is the electron injection spectral index and

$$
x = 1 \quad N \geq 1.5 \times 10^{17} E^2_c
$$

$$
= \frac{N}{1.5 \times 10^{17} E^2_c} \quad N < 1.5 \times 10^{17} E^2_c.
$$

E_c(keV) is the low energy cutoff (if any) in the electron spectrum and B_x is the partial beta function (total if $x = 1$). Equation (1) corrects some algebraic errors in Brown's (1973a) expression (cf. Lin and Hudson, 1976).

As many authors have pointed out, the flare atmosphere is divided into a high and a low temperature region by the radiative instability of cosmic plasma above $T \approx 5 \times 10^4$ K (at constant pressure), cf. Cox and Tucker (1969). Material above this transition zone rapidly becomes too hot to participate in forming the optical flare spectrum so we only consider the atmospheric structure below $T = 5 \times 10^4$ K. In this region three radiative loss contributions are important: heavy element lines and continua; H-negative continuum; and the hydrogen Lyman and Balmer lines and continua.

Heavy element lines and continua are assumed to be optically thin. They are somewhat problematic in that their loss contribution has only been computed down to around 2×10^4 K. Below this temperature their behavior becomes model dependent because of the effect of decreasing hydrogen ionization on the collisional ionization equilibrium and because some of the important lines may become optically thick. The best that seems possible at present is an empirical fit to the solar radiative loss curve (McWhirter et al., 1975) extrapolated to lower temperatures (similar to Brown, 1973a).

The H-negative and Hα and Lα losses here have been based on Canfield's (1974b, c) probabilistic radiative loss technique. This complicates the practical handling of the problem considerably over Brown's (1973a) original treatment.

For a quasi-steady state throughout the heated region, the energy balance equation can still be written as

$$
Q(N) = R
$$

(3)

at all N but R is no longer just a local function of N (through n, T) as in Brown's (1973a) treatment. Instead R depends on the entire structure of the atmosphere model, $T(N')$, $n(N')$ for all N', through radiative transport effects. Consequently (3) had to be solved by an iterative scheme using some starting model flare atmosphere and adjusting T at each level N' in the model grid (at constant pressure) until a model converging on condition (3) was obtained. In this iteration scheme we used Canfield's (1974c) program to approximate the radiative losses but confirmed previous estimates of the accuracy of the method by comparison with a detailed calculation for the converged model (see below). We have neglected any effect of direct non-thermal ionization or excitation by beam collisions, the
importance of which is still disputed (cf. Hudson, 1972; Brown, 1973b; Lin and Hudson, 1976).

In this approach it was found that the deeper layers were very slow (iteratively) to approach a steady state. This is because the radiative response time to the small input is long (due to radiative transport effects) so that in practice a steady state would only be reached slowly in real time also – in fact in a time long compared to typical beam durations (10–100 s). We therefore refined our procedure somewhat by estimating the real elapsed time up to any iterated stage in the model – i.e. we performed the iteration in quasi-real time steps. (The elapsed time was approximated by \((kT/m_H)/(Q-R)\).) The final model adopted was that reached after an estimated real elapsed time equal to a beam input duration \(\tau_B\) as parameter. (Here we use only \(\tau_B = 60\) s.) The deepest layers of the atmosphere were thus not yet in a steady state when heating was terminated. Note that this procedure does not incorporate time dependent radiative transfer but is a first approximation in avoiding the overestimate of the temperatures of deep layers incurred by assuming a steady state throughout.

It is appropriate at this point to consider the various time scales involved (cf. Brown, 1973a, b, 1974). First, the radiative response time \(\tau_R\) is of order \((kT/m_H)/Q\) which rises rapidly with depth due to the \(N\) dependence in (3). Thus a fair approximation is

\[
\tau_R \sim \left(\frac{10^9}{\mathcal{F}_{20}}\right)\left(\frac{N}{6 \times 10^{19}}\right)^2 \geq \left(\frac{10^9}{\mathcal{F}_{20}}\right)\left(\frac{n}{10^{12}}\right)^2
\]

(4)

and we see that for the \(\mathcal{F}_{20}\) values we require (Section 4) \(\tau_R \leq \tau_B\) except in the deepest layers (as noted above) so that a quasi-steady radiative treatment is not unreasonable, though not perfect either. The importance of conduction is harder to estimate since it may differ drastically according to whether transient steep conduction fronts are involved, or the atmosphere is quasi-steady. We can at least check the self-consistency of our model atmosphere using the simple estimate

\[
\tau_{\text{cond}} = nkT/\{\kappa(T)T/L^2\}
\]

(5)

for the conduction time. Using \(n \geq 10^{13} \text{ cm}^{-3}\), \(T \approx 10^4 \text{ K}\) in the H\(\alpha\) region, Coulomb conductivity \(\kappa(T)\) and adopting the shortest possible temperature scale length \(L\) from our Figure 1 in this region we find \(\tau_{\text{cond}} \geq 10^5\) s. (The chief uncertainty in this estimate rests on the possibility that our temperature structure at \(T \approx 10^4 \text{ K}\) could be substantially modified when linked conductively to the hot region above \(5 \times 10^4 \text{ K}\) which we ignore.) Our calculation is thus at least self-consistent.

3. Model Atmospheres

Here we present only results for the typical parameters \(\delta = 4\), \(E_c = 10 \text{ keV}\), \(\tau_B = 60\) s for flux values, \(\mathcal{F}_{20} = 10^8, 10^9, 10^{10}, \text{ and } 10^{11} \text{ erg cm}^{-2} \text{ s}^{-1}\). The resulting model atmospheres are shown in Figures 1 and 2 in terms of respectively \(T(z)\) and \(n(z)\)
Fig. 1. The computed temperature distributions for $\mathcal{F}_{20} = 10^8$, 10^9, 10^{10}, and 10^{11} erg cm$^{-2}$ s$^{-1}$.

Fig. 2. The computed hydrogen (atoms and ions) number density distributions for $\mathcal{F}_{20} = 10^8$, 10^9, 10^{10}, and 10^{11} erg cm$^{-2}$ s$^{-1}$.

(total hydrogen density) as functions of height z above the photosphere. In general the results differ from Brown (1973a) in deeper penetration of the heating (due to reduced radiative losses) and in local features on the $T(z)$ profiles due to the hydrogen line losses. The plateau at $T = 10^4$ K is due to the manner in which the optically-thin radiative losses were cut off and so may be spurious. Particularly
interesting in view of the ATM observations of EUV continua of neutral and singly-ionized elements is the heating between 500 and 1000 km. It is cut off at the lower end by reduced penetration of heating and increased effectiveness of radiative cooling, primarily due to H^{-}.

4. Computed and Observed Hα Profiles

Although the present models are based on very limiting assumptions concerning the dynamical and radiative effects, a preliminary comparison with the observations is nevertheless interesting. Hα line profiles were computed as before (Canfield, 1974a). Figure 3 shows the computed Hα profiles (dashed lines) for the four atmospheres, together with observed profiles (dash-dot lines) of the 1972, August 7 flare (Zirin and Tanaka, 1973; Tanaka, 1977). We will compare our computations with these data because we also have hard X-ray data (Hoyng et al., 1976; Lin and Hudson, 1976) for the August 7 flare.

When we compare computed ($F_{20} = 10^9$ and 10^{10} erg cm$^{-2}$ s$^{-1}$) and observed profiles in Figure 3, three features are striking:

(i) The theoretical degree of central reversal is much higher than observed. The lack of such reversals in the observed profiles can be attributed to the fact that even in the Hα kernels, considerable fine-scale line-of-sight variation is probably present, but not incorporated in the calculations. During flares, motions at chromospheric levels almost certainly reach several tens of km s$^{-1}$ and also cannot be expected to be the same throughout the field of view of the spectrograph.

(ii) The observed total intensities (emission equivalent widths) fall between those of the computed profiles for $F_{20} = 10^9$ and 10^{10} erg cm$^{-2}$ s$^{-1}$. These computed total intensities are much greater than Brown's (1973a) models gave (Canfield, 1974a). This is due to the greater depth of penetration of heating, i.e. to the reduced radiative losses.

(iii) The observed line widths fall between those of the computed profiles for F_{20} between 10^9 and 10^{10} erg cm$^{-2}$ s$^{-1}$. The computed line widths are much greater than those for Brown's (1973a) models, in better agreement with the observations. This is a combination of the effects of greater optical thickness of the Hα-forming region and Stark broadening due to higher values of n_e for a given value of F_{20}. The major difference between these profiles and those from the earlier models is a measure of the importance of the method used for computing radiative losses.

An elaborate comparison of computed and observed profiles is premature at this point. Briefly speaking, we find that the half-widths and equivalent widths of the computed profiles and the observed profiles can be made to agree within the observational uncertainty by incorporating effects of spatial inhomogeneity in F_{20} and in radial velocity.

We represent the radial velocity inhomogeneities by convoluting the computed profiles with a gaussian profile of $\frac{1}{2}$ width of 60 km s$^{-1}$ (macro-turbulence), comparable to velocities observed in the 1973, June 15 flare by Doschek et al. (1977). This
Fig. 3. Computed and observed Hα line profiles. **Dashed**: computed from the models for given F_{20} values. **Dot-dashed**: two observed 1972, August 7 flare kernels each at 15:18 and 15:21 UT (Tanaka, 1977). **Solid**: combination of computed profiles with $F_{20} = 10^9$ and 10^{10}, after smoothing with 60 km s$^{-1}$ random velocities.

is just sufficient to remove the central reversal from the model profile. Once this has been done we find that although the observed half widths and equivalent widths both fall in the range of theoretical profiles for $F_{20} = 10^9$–10^{10}, the ratios of the two
widths still do not fall anywhere along the theoretical curve for this ratio. However they may be made to do so by assuming that the heated region (electron impact area) occupies only a fraction \(\alpha \) of the observed kernel area. The appropriate model H\(\alpha \) profiles are then a combination of \(\alpha \) times the electron heated model profile for any chosen electron flux plus \((1 - \alpha)\) times the quiet Sun (or preflare) profile, \(\alpha \) being the 'filling factor'. We find that the best match to the data obtains for \(\alpha = \frac{1}{3} \) and that for this value the best fit value of \(F_{20} \), averaged over the whole kernel area, is about \(3 \times 10^{10} \text{ erg cm}^{-2} \text{ s}^{-1} \), implying local values \(\approx 10^{10} \text{ erg cm}^{-2} \text{ s}^{-1} \) on the impact areas. Had we adopted a macroturbulent velocity as high as 100 km s\(^{-1} \) we could obtain a fit to the data with rather less horizontal beam inhomogeneity in the kernels but then the necessary \(F_{20} \) would also have been less, and merely emphasized our conclusions in the following discussion.

Since we have profiles and models only for discrete \(F_{20} \) values, some idea of how the combined profile discussed above would compare with the observations is shown by the solid curve in Figure 3. This profile is an arbitrarily scaled average of the \(F_{20} = 10^9 \) and \(10^{10} \) profiles, after convolution with a gaussian (Doppler) profile of width 60 km s\(^{-1} \).

From the observed hard X-ray fluxes for this same August 7 event Hoyng et al. (1976) infer an energy input rate in electrons of \(E > 20 \text{ keV} \) of \(3 \times 10^{29} \text{ erg s}^{-1} \), while Lin and Hudson (1976) obtain \(2 \times 10^{29} \text{ erg s}^{-1} \). If, as with the H\(\alpha \) profiles, we adopt an impact area \(\frac{1}{3} \) of \(6 \times 10^{18} \text{ cm}^2 \), the H\(\alpha \) kernel area given by Zirin and Tanaka (1973), a value of \(F_{20} \approx 1 - 1.5 \times 10^{11} \text{ erg cm}^{-2} \text{ s}^{-1} \) is thus implied by the hard X-rays. This is approximately one order of magnitude greater than the injection rate inferred from the H\(\alpha \) profiles computed from the models. This discrepancy cannot be reduced, but rather is increased, by supposing that the bulk of the thick target electrons impact not in the kernels alone, but over the area of the entire H\(\alpha \) flare. According to Zirin and Tanaka (1973), this latter area is \(2.5 \times 10^{19} \text{ cm}^2 \), which corresponds to an injection of all the thick target electrons with a flux of \(F_{20} \approx 1 \times 10^{10} \text{ erg cm}^{-2} \text{ s}^{-1} \). For this value of \(F_{20} \) we compute an emission equivalent width of about 25 Å, if the flux is homogeneous over the entire flare area. The observed value of the equivalent width given by Zirin and Tanaka (1973) for the flare outside the kernels is about 1 Å. This large discrepancy also cannot be explained by inhomogeneities in the energy flux. Only imaging of the hard X-ray emission will enable us to incorporate inhomogeneities properly and provide a more stringent constraint on the electron heating model. Roy (1976) has argued that hard X-ray spikes (in the flare of 1972, August 2, – c.f. Hoyng et al., 1976) are not in fact coincident with optical (3835 Å) flashes (Zirin and Tanaka, 1973). However Zirin (1978) has found an exact correspondence and pointed out that Roy (1976) used incomplete optical data.

The discrepancy between fluxes inferred from H\(\alpha \) profiles versus hard X-rays may be attributed to the following:

(i) The electron injection rate into the chromosphere is considerably less than inferred above for a purely thick target model. For instance the thick target may be
fed by collisional precipitation from a trapped source, in which case \(F_{20} \) would take \(\frac{1}{3} \) of the above value (Melrose and Brown, 1976). Further reduction may be involved if electrons are confined by turbulent scattering or if the hard X-rays are significantly thermal.

(ii) Important sources of radiative cooling may have been omitted, e.g. bound-free hydrogen emission. As mentioned above, our preliminary calculations show this to be a complex, model-dependent radiative heating and cooling mechanism whose effects will be the subject of later work.

Support for the former explanation comes from the low EUV output of flares found by Emslie et al. (1978).

There are also a few factors that must be mentioned that would increase the discrepancy: (1) use of an active region model instead of a quiet-Sun model as the unperturbed atmosphere; (2) added heating terms such as heat conduction and soft X-ray heating; and (3) any additional line broadening mechanism such as Stark effect from plasma waves (Spicer and Davis, 1975). The only effects which could reduce the discrepancy are thus radiative losses higher than our estimates or a net conductive loss from the H\(\alpha \) region. Such improvements are appropriate for further work.

Acknowledgements

We thank K. Tanaka for permission to use his H\(\alpha \) profiles and M. Machado for useful discussions and comments on the manuscript.

The contribution of R. C. Canfield to this research has been sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR 76-3076, and by the Air Force Geophysics Laboratory, Air Force Systems Command, under Contract No. F19628-77-C-0165. M. N. Robertson has been supported by a U.K. Science Research Council Studentship. Two of us (J.C.B. and R.C.C.) have benefited considerably, in carrying out this research, from our participation in the Skylab Solar Workshop Series on Solar Flares. The workshops are sponsored by National Aeronautics and Space Administration and The National Science Foundation and managed by the High Altitude Observatory. Computing support was provided by the National Center for Atmospheric Research, which is supported by the National Science Foundation.

References