provide better first approaches to improving the corresponding atmospheric models than the complicated process of including the effects of rotation and atmospheric curvature in the models.

32.07.03 Observations of a Coronal Hole Boundary in the Extreme Ultraviolet. C. E. HUBER, P. V. POURAHL, R. W. NOYES, K. M. BEERS, E. J. SORMA, J. G. HUTCHON, J. E. VERRAZA, G. L. WITHROE, Center for Astrophysics Harvard College Obs. & Smithsonian Astrophysical Obs. - Spectrohelograms of a coronal hole boundary were recorded with the Harvard polychromatic spectrometer on ATM. The observations indicate that the boundary of the hole is very sharp as seen in the coronal line MgX, 605Å, exhibiting a drop in intensity of at least a factor of 6 over a distance of a few arc sec. The network structure underlying the coronal hole exhibits no obvious changes near the boundary. The observations permit the evolution of the coronal hole boundary and the underlying network to be followed for a period of 72 hours, at intervals of 5, 23, and 32 hours.

32.08.03 Observed Streamer Curvature in the Outer Solar Corona. D. C. Wilson and R. M. MacQueen, High Altitude Observatory, National Center for Atmospheric Research. - The first observations of coronal streamers to an elongation angle of 12.5° (50R\textsubscript{\odot} from sun center) were taken aboard the Apollo 15 command module in lunar orbit. The positions of three curved streamers determine a model of streamer curvature in both heliocentric latitude and longitude. The azimuthal curvature implies corotation of streamer material with the sun out to 25R\textsubscript{\odot} followed by a constant radial velocity of 275 km/sec and force free flow to at least 60R\textsubscript{\odot}. The curvature toward the solar equator implies a meridional flow of 50 km/sec northward at 60R\textsubscript{\odot}. The observations are consistent with solar wind properties observed at 1 A.U.

Session 33: Small Auditorium, 1400–1730

33.01.10 Frequency Functions of Apparent and True Ellipticities of Isophotal Surfaces in Galaxies. G. DE VAUCOULEURS & W. PENCE, U. Texas, Austin. - Photometrically calibrated isophotal diameters at μ\textsubscript{B} = 25.0 mag. (arc sec)	extsuperscript{-2} have been derived for more than 2000 galaxies to be included in a revision of the Reference Catalogue of Bright Galaxies (G. de Vaucouleurs, A. de Vaucouleurs, H. Corwin, in preparation). The frequency functions of apparent axis ratios were derived for galaxies larger than about 2' (face-on apparent diameters) to approximate an unbiased sample of a volume of space. Assuming a random orientation of the spin axes and with proper allowance for accidental errors in the observed axis ratios, the observed frequencies can be interpreted in terms of distribution functions.