definitely extended by Mills, Slee, and Hill also have indices near the center of the distribution. If sources have a constant index with respect to frequency and if the present observations are those at 960 Mc by Harris and Roberts are substantially correct, then the Third Cambridge flux densities are consistently low or the Mills-Slee-Hill flux densities are consistently high. This applies even to sources whose angular sizes, measured by Moffet at 960 Mc suggest that an error due to angular size was not made in the observations at 159 Mc. The research program at Harvard is sponsored by the National Science Foundation.

A Low-Background Image Tube for Direct Electrophotography. W. A. Hiltner and W. F. Niklas, Yerkes Observatory, University of Chicago, and the Rauland Corporation.—The use of image tubes for direct electronography at Yerkes Observatory has been frustrated because of intense background resulting from field emission. However, during the past six months, a decrease in background of 107 has been achieved. This large factor has resulted in a tube that has a background 3×103 less than the sky background at the focus of the f/20 40-inch refractor. Furthermore, no ion spot has been detected. The lifetime of the photocathode appears to be unlimited. No change in sensitivity was detected over a period of one month even though the tube was cycled (emulsions inserted and removed) over 200 times. The resolution is 40 line pairs per mm.

The Distribution of Stars in Dwarf Elliptical Galaxies. Paul W. Hodge, Mount Wilson and Palomar Observatories.—Star counts and photometric and photographic surface photometry have been used to determine the luminosity and stellar distributions across the faces of some local-group dwarf elliptical galaxies. Of the extreme dwarfs, the Fornax galaxy is the most favorable object for study because of its richness and size. The distribution of projected density with radius for giant elliptical galaxies. It approximately follows Hubble’s interpolation formula out to a distance of only 1 a (Hubble’s notation for the characteristic radius), beyond which the density falls off much more rapidly, reaching a rather definite zero value at a distance along the major axis of approximately 56 minutes of arc, which is 3.3 kpc at the assumed distance of 190 kpc. This is in reasonable agreement with the predicted value of the gravitationally limited radius imposed on the Fornax dwarf by the mass of the Galaxy.

Similar results are obtained for the other dwarf elliptical galaxies, Sculptor, Leo II, NGC 147, and NGC 185.

Diffuse Reflection by a Semi-Infinite Atmosphere. Henry G. Horak and S. Chandrasekhar, University of Kansas and University of Chicago.—The solution has been obtained for the problem of diffuse reflection by a semi-infinite atmosphere which scatters light in accordance with the phase function

\[p(\cos \theta) = \omega_0 + \omega_1 P_1(\cos \theta) + \omega_2 P_2(\cos \theta), \]

where \(\omega_0, \omega_1, \omega_2 \) are constants and \(P_1, P_2 \) are Legendre polynomials. The albedo, \(\omega_0 \), can be less than or equal to unity. The solution was obtained by the principle-of-invariance method.

A Modification of von Zeipel’s Method for a Choice of Canonical Variables Especially Suitable for Orbits with Small Eccentricities. Gen-Ichiro Hori, Yale University Observatory.—A set of canonical variables, in which a pair of the conjugate variables is \([2(L-G)](\cos \phi, \sin \phi) \), is adopted in order to avoid the divisor \(e \) when the odd powers of \(e \) are contained in the Hamiltonian. A modification of von Zeipel’s method is discussed so as to be applicable, yet preserve its main advantages. The theory is applied to the second “operation” of Delaunay’s lunar theory.

Departures from Thermodynamic Equilibrium in Chromospheric Mg\textsc{i}, Ca\textsc{i}, and \textit{O}\textsc{i}. Lewis L. House and R. Grant Athay, High Altitude Observatory, Boulder, Colorado.—Line intensities from the chromospheric flash spectrum observed at the 1952 total eclipse clearly indicate marked departures from LTE in Mg\textsc{i} and \textit{O}\textsc{i}. The same is suggested for Ca\textsc{i}, but not unambiguously. The following remarks relate only to Mg\textsc{i}.

The stronger triplets \(\lambda 5184 \) and \(\lambda 3838 \) are influenced by self-absorption for heights below about 2500 km. The forbidden line \(\lambda 4457 \) is observed, and is shown to be free from self-absorption. Its intensity leads directly to the opacities in the \(\lambda 5184 \) and \(\lambda 3838 \) triplets. At 500 km the radial opacities at line center are \(\tau_{5184} \approx 3 \) and \(\tau_{3838} \approx 7 \), establishing that the centers of these lines in the Fraunhofer spectrum are chromospheric in origin.

The singlet line \(\lambda 5528 \) is observed to fall off much more rapidly with height than the triplets even in the absence of self-absorption. The singlet to triplet ratios give unambiguous evidence of departures from LTE. At 1000 km, the intensity of \(\lambda 4571 \) is enhanced relative to \(\lambda 5528 \) by factors of 20 to 200 for assumed values of \(T_e \) of 6000° and 10 000°, respectively.

Solutions to the statistical equilibrium equations yield populations of energy levels in good agreement with the empirical values for opacities consistent with those in the chromosphere. The departures from LTE in \(3^1 S \) and \(3^3 P \) are shown to be the same.