NOTES

PHOTOGRAPHS WITH THE HENYEY-GREENSTEIN
WIDE-ANGLE CAMERA

The photographs illustrated in Figures 1-6 were obtained with a camera designed by L. G. Henyey, now of the University of California, and J. L. Greenstein, now of the California Institute of Technology, when both were members of the staff of the Yerkes Observatory.

The camera was constructed in the optical shop of the observatory by Messrs. Fred Pearson and Charles Ridell. In principle it consists of a lens which photographs the image formed by a spherical mirror; it has a field of approximately 140° and works at an effective aperture ratio of f/2. The lens and plateholder are supported in a position several feet in front of the mirror by means of three struts; the shadows of the plateholder and struts are visible in all the plates. The diameter of the field on the original plates is 21.5 mm; the enlargement of the plates is therefore approximately six times.

Figures 1, 2, and 3 illustrate the appearance of the Milky Way from Sagittarius to Canis Major. Figure 4 shows the Gegenschein, and Figures 5 and 6 illustrate the great aurora of August 19-20, 1950. The position of the center of the Gegenschein on Figure 4 agrees closely with the longitude of the antisolar point; this result is at variance with the recent determination of D. A. Rojkovsky.¹

We are indebted to Dr. W. W. Morgan for advice and assistance in preparing the reproductions.

DONALD OSTERBROCK*
STEWART SHARPLESS

YERKES OBSERVATORY
October 23, 1950

ROTATIONAL STRUCTURE IN THE \(R \) BRANCH OF THE
ATMOSPHERIC NITROUS OXIDE BAND AT 8.6 \(\mu \)

In a recent contribution to this Journal, Migeotte discusses the feeble fine structure in the \(R \) branch of the very weak nitrous oxide band at 8.6 \(\mu \) in the atmospheric spectrum.¹ Repeating an earlier error by Sutherland and Callendar,² Migeotte mistakenly asserts that the faint fine structure of this weak and minor band is completely absent from the author's grating map of the infrared solar spectrum, published a decade ago.³ Migeotte has obviously overlooked Figure 28 of the map, for even a cursory examination of this segment unmistakably reveals ten lines in the \(R \) branch of the weak 8.6 \(\mu \) band. These atmospheric lines, positions taken from Figure 28, are listed in Table 1 below, together with their laboratory comparisons.⁴

* Atomic Energy Commission Pre-doctoral Fellow in Astrophysics.
Fig. 1.—The Milky Way from Sagittarius to Perseus, October 12, 1950. Exposure, 15 minutes on Eastman 103a-O emulsion.
Fig. 2.—The Milky Way from Sagitta to Auriga, October 10, 1950. Exposure, 15 minutes on Eastman 103a-O emulsion.
Fig. 3.—The Milky Way from Cassiopeia to Canis Major, October 12, 1950. Exposure, 15 minutes on Eastman 103a-F emulsion. The zodiacal light appears in the lower left part of the plate.
Fig. 4.—The Gegenschein, October 10, 1950. Exposure, 15 minutes on Eastman 103a-F emulsion. The Gegenschein and a small part of the zodiacal band are visible in the lower left-central part of the plate. The plate has been copied to high contrast.
Fig. 5.—The aurora of August 20, 1950. Exposure, 10 seconds on Eastman 103a-F emulsion. The star Vega is in the upper right-central part of the plate.
Fig. 6.—The aurora of August 20, 1950. Exposure, 10 seconds on Eastman 103a-F emulsion. The star Vega is in the right-central part of the plate.