The solution was made with 1879 stars of the Yale Catalogue of Bright Stars. All stars of given parallax, proper motion, and radial velocities were used whose parallaxes were not less than 0'01 and whose velocities were not greater than 100 km/sec (a very few stars were used with velocities slightly greater than 100 km/sec).

The following results were obtained:

\[X = +16.595 \text{ km/sec} \]
\[Y = +6.015 \text{ km/sec} \]
\[u = -0.01558 \]
\[v = +0.05357 \]
\[w = -0.10857 \]

(the values of \(-\Sigma V_x/n\) and \(-\Sigma V_y/n\) are, respectively, +14.552 and 6.242).

From the values of \(u, v,\) and \(w\) we find that \(I_0\) can be equal to \(328^\circ.1\) which is in good agreement with the generally accepted value of the longitude of the galactic center.

Using this value of \(I_0\) we obtain \(V/R = +0.1055; K = -2.59.\)

This value of \(V/R\) gives a value of the period of rotation of about a fourth of the generally accepted value. The value of \(K\) does not seem to be explainable gravitationally.

THE FREMONT PASS STATION OF HARVARD OBSERVATORY

By Donal H. Menzel and Walter O. Roberts

Plans for coronal study were initiated at Harvard about four years ago. Experiments were first started, with the assistance of Mr. H. W. French, on a photo-electric method of eliminating sky glare. The laboratory tests were successful, but the program of observation by this method was postponed partly because of the work in this field by Skellett of the Bell Laboratory, and because of Lyot’s success with direct photography.

A coronagraph, following the Lyot design in broad outline, but with minor changes and improvements, was built and, through the cooperation of the Climax Molybdenum Company, has finally been installed at Fremont Pass, Colorado, at an altitude of 11,500 feet. Auxiliary equipment includes a spectograph and a motion picture camera, designed for taking records of the prominences and of the corona. At present observations are being secured by Mr. Roberts.