THE MAXIMUM MASS OF IDEAL WHITE DWARFS

BY S. CHANDRASEKHAR

ABSTRACT

The theory of the polytropic gas spheres in conjunction with the equation of state of a relativistically degenerate electron-gas leads to a unique value for the mass of a star built on this model. This mass (\(M = 0.01 \)) is interpreted as representing the upper limit to the mass of an ideal white dwarf.

In a paper appearing in the Philosophical Magazine,\(^1\) the author has considered the density of white dwarfs from the point of view of the theory of the polytropic gas spheres, in conjunction with the degenerate non-relativistic form of the Fermi-Dirac statistics. The expression obtained for the density was

\[
\rho = 2.162 \times 10^6 \times \left(\frac{M}{\odot} \right)^2,
\]

(1)

where \(M/\odot \) equals the mass of the star in units of the sun. This formula was found to give a much better agreement with facts than the theory of E. C. Stoner,\(^2\) based also on Fermi-Dirac statistics but on uniform distribution of density in the star which is not quite justifiable.

In this note it is proposed to inquire as to what we are able to get when we use the relativistic form of the Fermi-Dirac statistics for the degenerate case (an approximation applicable if the number of electrons per cubic centimeter is \(> 6 \times 10^{29} \)). The pressure of such a gas is given by (which can be shown to be rigorously true)

\[
P = \frac{8}{\pi} \left(\frac{3}{c} \right)^{\frac{1}{2}} \cdot h c \cdot n^{1/3},
\]

(2)

where \(h \) equals Planck's constant, \(c \) equals velocity of light; and as

\[
n = \frac{\rho}{\mu H(1+f)},
\]

(3)

\(^1\) II, No. 70, 592, 1931.
\(^2\) Philosophical Magazine, 7, 63, 1929.

© American Astronomical Society • Provided by the NASA Astrophysics Data System
\(\mu \) equals the molecular weight, 2.5, for a fully ionized material,
\(H \) equals the mass of hydrogen atom, and \(f \) equals the ratio of
number of ions to number of electrons, a factor usually negligible.
Or, putting in the numerical values,
\[
P = K \rho^{4/3},
\]
where \(K \) equals \(3.619 \times 10^{14} \). We can now immediately apply the
theory of polytropic gas spheres for the equation of state given by
(4), where for the exponent \(\gamma \) we have
\[
\gamma = \frac{4}{3} \text{ or } 1 + \frac{1}{n} = \frac{4}{3} \text{ or } n = 3.
\]

We have therefore the relation\(^1\)
\[
\left(\frac{GM}{M'} \right)^2 = \frac{(4K)^{3}}{4\pi G},
\]
or
\[
M = 1.822 \times 10^{33},
\]
\[
= 0.91 \odot \text{ (nearly).}
\]

As we have derived this mass for the star under ideal conditions of
extreme degeneracy, we can regard \(1.822 \times 10^{33} \) as the maximum mass
of an ideal white dwarf. This can be compared with the earlier estimate of Stoner\(^2\)
\[
M_{\text{max}} = 2.2 \times 10^{33},
\]

based again on uniform density distribution. The “agreement” be-
tween the accurate working out, based on the theory of the poly-
tropes, and the cruder form of the theory is rather surprising in view
of the fact that in the corresponding non-relativistic case the devi-
ations were rather serious.

\begin{flushleft}
Trinity College
Cambridge
November 12, 1930
\end{flushleft}

\(^1\)A. S. Eddington, Internal Constitution of Stars, p. 83, eq. (57.3.)
\(^2\)Philosophical Magazine, 9, 944, 1930.