Annapolis, and by the telegraph lines.

The corrections for the stars in the other national almanacs not contained in the American Ephemeris are being formed on the same system as used in obtaining the corrections to the American Ephemeris positions and the publication in the Astronomical Papers of the American Ephemeris will contain positions of all the stars in the various national almanacs, 1500 in all.

THE DEPTH OF THE SOLAR CHROMOSPHERE.

By Philip Fox.

By means of a prism micrometer, an instrument by means of which points on opposite limbs of the sun may be brought simultaneously upon the slit of the spectroscope, measurements of the depth of the chromosphere have been made using the hydrogen line, Hα, and the helium line, D₂. Observations consist in setting the prisms just at the point where the absorption lines from the two limbs change to emission lines and there taking a micrometer reading, then separating the prisms until the emission lines from the two limbs simultaneously disappear. Another reading is taken here. The difference between these two micrometer readings will give the double depth of the chromosphere for the line under observation.

The prism micrometer was used with spectrographs on the 40-inch telescope at the Yerkes Observatory, and with the Dearborn refractor. The results are quite harmonious and indicate a depth between 9″ and 10″ for Hα, and between 7″ and 8″ for D₂. The observations will be continued.

THE ADJUSTMENT OF THE 60-INCH HARVARD REFLECTOR.

By Willard P. Gershon.

The peculiar construction and optical arrangement of the 60-inch reflector of the Harvard College Observatory led to the employment of original methods of adjustment which were especially suited to somewhat unusual conditions, and which may find more general applications.

The method used for the alignment of the polar axis is based upon the principle that if the axis is out of adjustment, and is rotated, a star situated exactly at the pole would trace a circular arc in the field of the telescope, the center of this arc being the point at which the star would appear if the axis were in adjustment. If the axis is rotated westward at the sidereal rate, stars near the pole trace similar arcs which may be regarded as circular for practical purposes, so that any star within a degree or two of the pole may be said to behave as if it were at the pole. In the northern hemisphere, the motion of the star in the field is always in a clockwise direction as seen through the eyepiece. For many years, advantage has been taken of this principle in the adjustment of photographic telescopes; but, while the photographic trail shows the error of alignment, it affords no direct means of bring-