COMUNICAZIONE PRELIMINARE
SULLA CAUSA DEI FENOMENI CARATTERISTICI DEGLI SPETTRI DELLE MACCHIE SOLARI 1)

DI G. E. HALE, W. S. ADAMS E H. G. GALE

TRAUDUZIONE DI A. CAVASINO

Per la singolare importanza di questo studio dell’ingrossamento elettivo delle righe fraunhoferiane nello spettro delle macchie solari, dimostrato da Sir N. Lockyer circa 40 anni fa, e per la novità della spiegazione del detto ingrossamento, trovata dagli Autori, e per la grande portata che essa ha relativamente alla questione della temperatura del sole e delle stelle, crediamo opportuno di dare una traduzione dei principali Capitoli di questo magistrale lavoro, in modo da formarne un riassunto. Omettiamo le tabelle numeriche, le quali potranno esser consultate nella pubblicazione originale.

R.

Considerando gli aspetti caratteristici degli spettri delle macchie solari, tre punti attirano l’attenzione:

1. Il fatto che certe linee (neri) nello spettro di un dato elemento sono rinforzate, mentre altre sono indebolite; le rimanenti linee non sono modificate.

2. Che tutte le linee rinforzate sono comprese entro lo spettro visibile, nessuna di esse occorrendo nell’ultra-violetto: e che predominano nel rosso, giallo e verde.

3. La intensità relativamente grande del fondo (lucido) dello spettro delle macchie nella regione meno rifrangibile.

Dalla nostra conoscenza generale degli spettri corrispondenti a varie temperature noi sappiamo:

1. Che passando da una temperatura elevata a una temperatura più bassa, alcune linee sono relativamente rinforzate, altre rimangono invariate, e altre diminuiscono d’intensità.

2. Che tale riduzione di temperatura è accompagnata da un aumento dell’intensità relativa delle linee (lucide) meno rifrangibili, e da uno spostamento del massimo di luce dello spettro continuo verso il rosso.

La generale corrispondenza di questi due gruppi di fatti ci condusse a cercare una spiegazione degli spettri delle macchie solari, nella ipotesi che i vaporei metallici entro le macchie abbiano una temperatura più bassa di quella della fotosfera.

Fortunatamente la miglior parte del materiale fu utilizzabile per la ricerca. Le fotografie degli spettri delle macchie, eseguite col telescopio di Snow e lo spettrografo di Littrow di 5m,5 di distanza focale, mostrano un immenso numero di linee fraunhoferiane modificate 2), A queste lastre, che coprono la regione da D a H_β, si è aggiunto un supplemento di fotografie dell’intero spettro di grandi macchie recenti, estendendosi da A nel rosso fino

1) Contributi dall’Osservatorio solare di M. H. Wilson, N. 11.
DEGLI SPETTROSCOPISTI ITALIANI

Il lavoro di laboratorio cominciò con uno studio del ferro in un arco rotante sincrono, ideato dal Prof. Crew, e costruito per noi sotto la sua direzione. Questo strumento ingegnoso permette di fotografare a qualunque fase lo spettro dell'arco alternante. In una relazione dei suoi esperimenti con l'arco, pubblicata l'anno scorso nell' Astrophysical Journal il prof. Crew mostrò che i cambiamenti nelle intensità relative delle linee, fotografate ad angoli di fase varianti da 90° a 0°, corrispondono ai cambiamenti osservati passando da un'alta a una bassa temperatura.

L'arco dà ottimi risultati, ma lo splendore diminuisce rapidamente con la fase, producendo un aumento non desiderabile di tempo di posa. Perciò occorse al Signor Gale di provare l'effetto prodotto dal variare l'intensità della corrente in un arco ordinario a corrente diretta di 110 volt, essendo tenuta prossimamente costante la differenza di potenziale tra i poli.

Gli spetti fotografati con corrente di 30 ampères e 2 ampère rispettivamente, mostrano cambiamenti di intensità simili a quelli osservati con l'arco sincrono, col vantaggio che lo spettro dato dall'arco a debole corrente richiede una posa molto più breve di quella dell'arco sincrono di bassa fase, che è necessariamente intermittente. Noi abbiamo così fotografato, con corrente di 30 ampères e di 2 ampères, gli spetti del ferro, titanio, vanadio, cromo, manganese, calcio e altri metalli caratteristici delle macchie solari.

Col progredire del lavoro si osservò una corrispondenza tra le linee (lucide) che sono rinforzate nella scintilla e quelle (oscuri) che sono indebolite nelle macchie solari. Per un ulteriore studio di questo effetto noi abbiamo anche fotografato gli spetti degli stessi elementi nella scarica di un trasformatore di 600 watt, che dava circa 6000 volt agli estremi del circuito secondario. Nel circuito di scarica fu inserito un condensatore, e il potenziale veniva aumentato da una scintilla auxiliaria nell'aria, posta in serie con la scintilla osservata, entrambe essendo poste alla forte corrente d'aria di un ventilatore elettrico.

In queste condizioni le linee rinforzate 1) nella scintilla sono mostrate bene nelle fotografie. Noi stiamo facendo ulteriori ricerche di esse con l'aiuto di un trasformatore di 5 chilowatt, che dà, a piacere, 1000, 2000, 4000, 8000, 16000, 32000 o 64000 volts.

Lo strumento adoperato in questa ricerca, col quale sono state eseguite in massima parte gli spettri in laboratorio è uno spettroscopio a reticolato simile a quello di Littrow, con 3°, 96 di distanza focale. Il reticolato è di Michelson, con 700 linee per millimetro, e dà uno spettro brillante di primo ordine, con eccellente definizione in un lato.

La fenditura è fornita da una sbarra occultante, per mezzo della quale i due spettri da paragonarsi possono venire fotografati nel modo solito. Nella maggior parte di questo lavoro noi abbiamo preferito tuttavia di eseguire le pose separate, attraverso la stessa finestra nella sbarra, movendo la lastra tra le pose. In questo modo noi abbiamo potuto ottenere una maggiore variazione di tempi di posa, e questa disposizione è stata trovata soddisfacente, poiché i piccoli spostamenti tra gli spettri separati non hanno conseguenza per il nostro scopo. La finestra adoperata ha un diametro di 1mm. 2. Il nostro metodo usuale di paragonare gli archi deboli coi forti è stato quello di collocare da ciascun lato dello spettro dell'arco debole due spettri dell'arco forte, dando diverso tempo di posa nei due casi.

Delle quattro pose dell'arco forte ottenute in questo modo, ne viene scelta una, la

1) S'intende rinforzate nella scintilla (elettrica) in confronto all'arco.
quale è più prossimamente paragonabile, nella sua intensità generale, con lo spettro dello arco debole. Quando è stato aggiunto anche lo spettro della scintilla, esso è stato collocato di solito immediatamente vicino all’arco debole, con la disposizione supposta dell’arco forte. Alcune lastre sono state prese con lo spetrografò in quarto di Fuess, ma ciò soltanto a scopo qualitativo.

L’arco adoperato in questo lavoro è del tipo auto-alimentatore, con poli di carbone, agente in un circuito con corrente diretta (batteria) di 110 volts. Il metallo è stato collocato in ogni caso al polo positivo.

Spiegazione delle tavole

Le tavole contengono i risultati di uno studio degli elementi titanio, vanadio, ferro, cromo, e manganese, per una regione estendentesi dall’ultravioletto a \(\lambda = 5800 \) (nel giallo). La nostra ricerca degli spettri delle macchie e di quelli di laboratorio è lungi dall’essere completa, ma il materiale qui presentato sembra sufficiente per lo scopo di una comunicazione preliminare. Le tavole comprendono tutte le linee che sono modificate in modo particolare, e che, per l’aumento o la diminuzione di intensità nelle macchie in paragone al disco (solare), o con scintilla, o con arco debole in paragone coll’arco forte, hanno speciale significato in questa ricerca. Fino a che non diverrà possibile, con l’uso di metodi sperimentali perfezionati, di accrescere la grandezza degli effetti osservati in laboratorio, è necessario omettere dalla discussione quei leggeri cangiamenti che sono ora al di là dei limiti di una osservazione accurata.

Sommario

1. Questo scritto contiene uno studio preliminare delle più importanti linee delle macchie solari nella regione superiore a \(\lambda = 5800 \), appartenenti al titanio, cromo, ferro, vanadio e manganese, che sono i metalli più caratteristici delle macchie solari.
2. Più del 90% delle linee (oscure) delle nostre tavole, che sono rinforzate nelle macchie solari, si trovano rinforzate nell’arco passando da 30 amplier a 2 amplier.
3. Più del 90% delle linee che le nostre tavole mostrano indebolite nelle macchie solari sono indebolite o mancanti nell’arco di 2 amplier.
4. Più del 90% di tutte le linee “rinforzate”, comprese nelle nostre tavole, sono indebolite o mancanti nell’arco di 2 amplier.
5. In una lista di 152 linee scelte a caso e che non sono linee delle macchie, non venne trovato alcun caso di linee rinforzate a bassa corrente o nella fiamma.
6. Noi non siamo in grado di esprimere un’opinione definitiva, ma incliniamo al concetto che le differenze di temperatura siano atte a spiegare i superiori fenomeni. Le nostre ragioni in favore di questo concetto possono essere sintetizzate nel modo seguente:
 a) La somiglianza dei fenomeni spettroscopici dell’arco debole a quelli dell’arco sincrono a bassa fase, ritenuti da Crew come corrispondenti ad una bassa temperatura.
 b) Il probabile decrescimento nella temperatura dell’arco col decrescimento dell’intensità della corrente.
 c) Il comportamento delle linee “rinforzate” nell’arco di 2 amplier.
 d) La presenza delle linee delle macchie solari nelle stelle rosse.

Aggiunta.

Quando venne scritto il superiore lavoro, non si supponeva che potesse essere presentemente dimostrata l’attitudine delle sole differenze di temperatura alla spiegazione dei fe-
nomini osservati. In seguito venne stabilito però di costruire un forno elettrico per uso immediato nel nostro laboratorio di Pasadena, dove era utilizzabile una corrente sufficiente. Venne anche costruito uno spettrografo Litrow per le osservazioni col forno. Questo spettrografo venne provveduto di obbiettivo Zeiss combinato per il collimatore e per la camera, di 15 cm. di apertura e 5 m, 49 di lunghezza focale, e di un reticolo di Rowland con superficie rigata di cm. 12,7 × 9,5 avente 5900 linee al centimetro, per l’uso del quale siamo obbligati alla gentilezza del Prof. Ames.

In aggiunta al nostro lavoro col forno, che non lascia dubbi sull’esplicabilità dei fenomeni dell’arco come effetti di temperatura, noi abbiamo ottenuto prove indipendenti, mediante l’osservazione delle porzioni esterne della fiamma di un arco ordinario, che conducono alla stessa conclusione. In questa ricerca il metallo considerato, ridotto in polvere, veniva posto al polo positivo. Il vapore nella lunga fiamma che deriva da un tale arco è indubbiamente di temperatura più bassa che quella tra i poli. Le fotografie dello spettrum della fiamma mostrano le bande dell’ossido, e danno altre prove di bassa temperatura, come il rinforzamento della linea blu del calcio, che è più intensa di H. e K. Lo spettro della fiamma, paragonato con quello dell’interno dell’arco (tra i poli), mostra cambiamenti nell’intensità delle linee simili a quelli osservati con un arco di 2 ampères e con un arco sincrono.

Per risolvere pienamente l’importante questione dell’identità di queste variazioni abbiamo fatto un’estesa serie di paragoni dell’arco debole e della fiamma. Primieramente venne fatta una serie indipendente di determinazioni: relative alle linee affette nella fiamma, e queste vennero poi comparate con le determinazioni relative alle linee affette nell’arco debole. I risultati di questo paragone sono indicati nel seguente specchietto:

<table>
<thead>
<tr>
<th>Elementi</th>
<th>Numero delle linee comparate</th>
<th>Affette nello stesso senso</th>
<th>Affette per lo stesso importo</th>
<th>Ammontare della più grande diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>122</td>
<td>111</td>
<td>98</td>
<td>0, 5</td>
</tr>
<tr>
<td>V</td>
<td>49</td>
<td>42</td>
<td>34</td>
<td>0, 5</td>
</tr>
<tr>
<td>Cr</td>
<td>62</td>
<td>57</td>
<td>51</td>
<td>1, 0</td>
</tr>
<tr>
<td>Fe</td>
<td>28</td>
<td>24</td>
<td>20</td>
<td>0, 5</td>
</tr>
<tr>
<td>Mn</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0, 5</td>
</tr>
</tbody>
</table>

Le quantità dell’ultima colonna sono espresse in unità della scala estendentesi da zero a cinque, usata nelle valutazioni delle differenze d’intensità nelle nostre tavole precedenti.

Risulta evidente da questo paragone che possono esservi pochi dubbi in rapporto all’identità degli effetti esistenti nell’arco a bassa corrente e nelle porzioni esterne della fiamma dell’arco forte. In conseguenza possiamo dire in generale che la grande maggioranza delle linee che sono rinforzate nelle macchie solari sono relativamente rinforzate nella fiamma, mentre in eguale misura quelle che sono indebolite nelle macchie solari, sono relativamente indebolite nella fiamma.

La seconda parte della prova è fornita da alcuni risultati ottenuti col forno elettrico. Questo lavoro venne intrapreso nella speranza di osservare quelle variazioni d’intensità che si riscontrano nell’arco debole, sotto condizione che vengano eliminati tutti i possibili effetti elettrici, e che si lasci la temperatura come il solo possibile agente della produzione di esse.
Il forno usato era del tipo di quello impiegato da Moissan.

Un tubo di carbone di 3,2 cm. di diametro esterno e di cm. di diametro interno venne passato attraverso le pareti di una piccola scatola rettangolare di carbone di storta, sepolto in una grande quantità di polvere di magnesite. Ad alto retto rispetto a questo tubo vennero collocati i poli di carbone di un potente arco modo che il centro del- l'intervallo tra i poli cadessero esattamente sul tubo di carbone. In seguito quando la corrente passava tra i poli, l'arco scoccava sul tubo, e la cella intensamente riscaldata aiutava a distribuire il calore sopra una considerevole pene della lunghezza di esso tubo. Venne impiegata una corrente di circa 600 ampère potenziale di 50 volt e noi speriamo di essere in grado, con poche modificazioni, di impiegare una simile forza di corrente a 100 volt. L'elemento in studio venne postell'interno del tubo di carbone e la luce è proiettata dall'apertura mediante una lente flessa dello spettrografo di Littrow.

Con questo strumento abbiamo fotografato gli spettri del b e del manganese, e ci auguriamo di ottenere presto ugualmente bene quello del e. Non è però certo che sia possibile con questo formidabile apparecchio di vaporizzare iario e il vanadio, elementi altamente refrattari, ma noi speriamo di arrivare con l'ito di un potenziale più elevato.

Il paragone delle lastre del manganese e del ferro nelle ioni verde e gialla con quelle ottenute nella fiamma e nell'arco a bassa corrente sonel più grande interesse ed importanza. Un apprezzamento indipendente delle intensità tive delle linee del man- ganese sopra le lastre ottenute col forno, mostra che tutte le a linee di lunghezza di onda superiore a 5255, date nella tavola, vi sono comprese. Queste sette sono affette nello stesso senso e per lo stesso importo.

La linea rinforzata \(\lambda = 5377,8 \) è ridotta a intensità 2 norme e ad 1 nell'arco debole; e le linee più affette nell'arco debole, \(\lambda = 5395 \) e \(\lambda = 5397 \), sono così altamente rinforzate nel forno da essere invertite. I risultati dati dalla a: del ferro sono simili.

Delle 24 linee da \(\lambda = 5110 \), verso il rosso, tre sono troppo deboli per essere visibili sulla lastra del forno. Le rimanenti 21 linee sono affette simili nel forno e nell'arco debole, e 17 di esse per lo stesso importo.

La maggiore differenza nelle altre quattro ammontava a: metà di una divisione.

Obbiezioni all'ipotesi della temperatur.a.

Un riassunto delle principali obbiezioni contro l'ipotesi c la differenza di temperatua sia il fattore essenziale nella produzione dei fenomeni osservati nella fiamma, nella scintilla e nelle macchie solari, formerà un corollario pertinuo alla conclusione della nostra discussione principale. Sarà pure di notevole interesse indicare la direzione secondo la quale noi ci proponiamo di continuare la maggior te delle nostre investi- gazioni.

Le più importanti di queste obbiezioni sono le seguenti:

1. La relativa assenza nelle macchie solari, di linee rinforzate e indebolite nelle porzioni blu e violetto dello spettro. Mentre è vero che le diverse nelle intensità relative delle linee nell'arco debole e nell'arco forte ordinariamente sfruttano meno nella regione più rifrangibile dello spettro, vi sono ancora alcuni casi ispicaci di rinforzamento di linee nell'arco debole, che non sono affette nelle macchie sti. Forse i più importanti esempi di questa specie sono le tre linee del Cr. \(\lambda = 4290, \lambda = 4275 \) e \(\lambda = 4255 \). Tutte queste linee sono spiccatamente rinforzate nell'arco debole e a fiamma, ma non sono
DEGLI SPECTROSCOPISTI ITALIANI

affette nelle stessa categoria di linee appartiene la linea blu del Ca in \(\lambda = 4227 \). Qun intensità colla diminuzione della temperatura, ma non sembra che sia affette. (a).

Nel caso forzate la cosa è ancora più saliente. Come è ben noto, le linee più fortemente di quasi tutti gli elementi si trovano nell’ultra-violetto. Per contro è un fea più rifrangibile da noi osservata nelle nostre fotografie, che comparisca infettata nelle macchie solari è \(\lambda = 3906 \).

Quantunque non abbiamo una spiegazione sufficiente per questo stato di cose, vi sono considerazioni che sembrano importanti. Una di queste è la spicata somiglianza aspetto, della fotografia di uno spettro solare anomalo, ottenuta nel 1834. (b).

In questattorre dello spettro solare da \(\lambda = 4100 \) a \(\lambda = 3900 \) è totalmente cambiato. Al 3900, però, lo spettro ritorna gradualmente al tipo normale. Quantunque l’analimento dello spettro delle macchie solari possa essere una meraviglia, è degna di osservazione. Doppù di sogni nel fatto che certi elementi come manganese e, in generale, il titanio mostrano una stretta concordanza collai, mentre altri mostrano importanti eccezioni, è suggerita la possibilità chent siano differentemente distribuiti nelle macchie e che i vapori non siano ad essa temperatura. (b).

Un tentazione delle sopradette difficoltà potrebbe essere fondato sulla ipotesi che i enti la maggior parte dei cambiamenti caratteristici nelle linee delle macchie sono alla base dello strato inverte, dove essi possono formare uno strato sottile. Conseguentemente nella parte più rifrangibile dello spettro, l’assorbitori sopraestanti può essere così grande da mascherare quasi completatamente selettivo di questo piccolo strato.

Da questesta lo spettro di una macchia nella regione più rifrangibile sarebbe dovuto: ai vapori più alti, e dovrebbe mostrare piccole differenze con l’ordinario spig grandissimo abbassamento nell’intensità dello spettro delle macchie in spazio solare nella regione violetta, dove l’intensità è solamente circa da un tonto così grande come nelle regioni del giallo e del verde, probabilmente inclon un potente assorbimento generale. Nella sopradetta ipotesi quest’assorbimento come praticamente sufficiente ad annullare gli effetti dell’assorbimento seire i vapori producenti quest’ultimo ristretti in spessore.

2. Alcuni regione meno rifrangibile dello spettro sembrano rinforzate nella scintilla, tempo che esse sono rinforzate nella flamma e nelle macchie. I principali caspicie sono le linee del ferro \(\lambda = 5430 \) e \(\lambda = 5447 \).

3. I calle intensità relative delle linee nella flamma non sono in tutti i casi d’accordo osservati nelle macchie. Esempii di questa sorta risultano

1) Astrophysik 11-255, 1902.

(a) Forse mai notato che nelle nostre fotografie dell’eclisse del 30 agosto 1905, ottenute colla prisma riga singolare non ha dato immagini delle protuberanze, mentre le righe H e K, pure del no intensissime.

(b) Probabilmente protuberanze i gas e vapori che le formano sono diversamente distribuiti ed hanno in essecentori: poiché le immagini delle protuberanze sulle righe di differente refrangibilità sono mai talvolta appaiono in alcune righe ed talvolta no.
evidenti da una ispezione delle tavole. Un esame di queste tavole fornisce anche qualche indicazione di una più grande quantità di rinforzamenti, nell’arco a bassa corrente, delle linee forti anziché delle deboli. Però l’evidenza non è tale da essere considerata come conclusiva, poiché le eccezioni sono numerose ed importanti. Che l’effetto, pertanto, non sia dovuto a cause fotografiche o fisiologiche, appare dalla loro persistenza sulle lastre, prese con tempi di posa molto vari. Se è genuino, esso è identico a quello ritenuto da Fowler come esistente specialmente nel caso delle linee delle macchie: cioè che tali linee sono in generale affette in proporzione alle loro intensità assolute 1).

Noi avremmo occasione di opporsi a questa conclusione in una precedente comunicazione 2), ed essa certamente non è nata dai risultati ottenuti per due almeno degli elementi più predominanti nelle macchie solari: titano e vanadio. Noi speriamo di risolvere definitivamente la questione dell’esistenza di tale effetto per le linee rinforzate nell’arco con corrente debole e nella fiamma, in un prossimo periodo delle nostre future indagini.

A questo riguardo, tuttavia, è bene richiamare l’attenzione sul fatto che nel laboratorio e nelle macchie solari noi abbiamo da fare con temperature assolute che probabilmente sono considerevolmente diverse. Perciò il differente incremento di variazione a diverse temperature assolute può dar ragione di alcune delle discrepanze sopra menzionate. Se fosse possibile determinare con esperimenti di laboratorio la temperatura dei vapori delle macchie, sarebbe molto semplificato un ulteriore lavoro in questa via. Supponendo corretta la nostra ipotesi, un tale metodo di determinare questa temperatura, benché, forse, soggetto a serie difficoltà pratiche, consisterebbe nello stabilire l’eguaglianza nel laboratorio di un paio di linee, le quali siano state osservate di eguale intensità nelle macchie solari e una delle quali fosse una delle rinforzate. Poiché le linee rinforzate diminuiscono di intensità col diminuire della temperatura, mentre le altre linee aumentano, l’eguaglianza di intensità in laboratorio dovrebbe servire per determinare la temperatura in questione.

4. Siccome sembra essere opinione di parecchi osservatori che le linee rinforzate possano essere prodotte a basse temperature, per via di opportuni mezzi elettrici, questa parte del soggetto richiederebbe ulteriori indagini. La nostra ipotesi, tuttavia, non stabilisce che le differenze di temperatura offrano il solo mezzo di spiegare i cambiamenti osservati negli spettri metallici. Essa semplicemente presume che le variazioni di temperatura presentino una via semplice e soddisfacente per dar ragione dei cambiamenti nelle intensità relative delle linee delle macchie, come sono osservate in laboratorio, nelle macchie solari e nelle stelle.

5. Le linee dell’idrogeno, fino ad Hα, sono indebolite nelle nostre fotografie di spettri di macchie. Questo fatto, in congiunzione con la grande intensità delle linee dell’idrogeno nella cromosfera e nelle stelle del 1° tipo (dove le linee rinforzate sono intensificate), e la loro debolezza nelle stelle rosse, può divenire la base di un’ipotesi che dia ragione dell’indebolimento delle linee rinforzate nelle stelle rosse e nelle macchie. Hartmann ha mostrato che le linee rinforzate sono intensificate in un arco nell’acqua, a causa, secondo lui, dell’idrogeno prodotto dalla decomposizione di essa. Un simile effetto dell’atmosfera di idrogeno è stato osservato da Crew con un arco rotante, ma egli attribuisce la produzione delle linee della scintilla ad una più rapida interruzione, prodotta dalla presenza dell’idrogeno che introduce una nuova forza (extra) elettromotrice 3). Noi abbiamo osservato lo spe-
di un arco nell’idrogeno, con corrente continua di 110 volts, tra poli metallici fissi. Come non vi era alcuna interruzione, la spiegazione di Crew non sembra adatta a dare ragione dell’apparente intensificazione delle linee rinforzate nelle nostre fotografie. Se i risultati di questo esperimento preliminare saranno confermati da ulteriori ricerche, l’ipotesi dell’idrogeno potrà richiedere ulteriori investigazioni.

Si può rammentare che nel suo lavoro sulla “Evoluzione delle stelle del tipo del Sole” 1) Schuster suggerisce la possibilità che le estese atmosfere d’idrogeno delle stelle di 1° tipo potrebbero dar ragione della loro elevata temperatura, se fosse dimostrato che lo idrogeno, forse in una certa forma con la quale noi non siamo familiarizzati in laboratorio, assorbe fortemente nell’infra-rosso. Non abbiamo alcuna evidenza che ci additi l’esistenza di tale assorbimento, e perciò non ci sentiamo affatto sicuri che le elevate temperature delle stelle di 1° tipo dipendano dalle loro estese atmosfere di idrogeno. Sarà forse possibile determinare con esperimenti di laboratorio, che ora si stanno eseguendo, se la presenza dell’idrogeno può produrre un aumento nella temperatura dall’arco o della scintilla.

Nota aggiunta il 2 ottobre 1906.

Rivedendo questo lavoro, nel pubblicarlo come “Contributo dall’Osservatorio Solare”, noi possiamo includervi una osservazione che sembra non lasciare alcun dubbio sulla temperatura relativamente bassa delle macchie solari.

Un accurato studio dei colonnati (flutings) dell’ossido di titanio nella fiamma di un arco, e un confronto di questi colonnati con due delle nostre migliori fotografie di spettri solari, mostrano chiaramente la presenza di almeno uno dei colonnati nelle macchie. La lunghezza d’onda nell’arco del due primi massimi di questo colonnato troviamo essere \(\lambda = 5597,95 \) e \(\lambda = 5629,52 \). Nelle macchie questo colonnato è rappresentato da un gran numero di linee fini, con massimi ben definiti a \(\lambda = 5597,98 \) e \(\lambda = 5629,52 \). Il forte colonnato verde, che comincia a circa \(\lambda = 5168 \), che costituisce una caratteristica così notevole dello spettro delle stelle di 3° tipo, potrebbe anche essere rappresentato nelle macchie, benché ciò non sia ancora certo.