in full. The first describes the circumstances which led to the discovery of the new gas, and gives a qualitative comparison of the spectra in argon and helium tubes. Argon was found to be present in the helium tube, but there were sixteen easily visible lines present in the helium tube only, one of them the strong yellow line. From the fact that there were "two red lines strong in argon, and three violet lines strong in argon, but barely visible and doubtful in the helium tube," Professor Ramsay was led to suspect the presence in atmospheric argon of a gas absent from the argon found associated with helium.

Professor Lockyer's paper describes his visual and photographic observations of the gas given off by particles of Uraninite when heated in a glass tube. Most of the lines photographed appear to be due to the structure-spectrum of hydrogen, but several were obtained which are near lines in the solar chromosphere. Professor Lockyer did not find in the gas the argon and other special lines noted by Crookes, nor could he see most of the lines measured by Thalén.

G. E. H.

NOTE ON THE HUGGINS METHOD OF PHOTOGRAPHING THE SOLAR CORONA WITHOUT AN ECLIPSE.

In the light of the conclusion noted last month in regard to the exposure necessary in photographing the solar corona without an eclipse I regret to find that in some of my papers I have quite unintentionally misrepresented Dr. Huggins' method of coronal photography. He has clearly pointed out from the first that what he was attempting to photograph was the increased brightness of the sky about the Sun due to the presence of the corona. The exposure required in this case is determined by the brightness of the sky and not by the brightness of the corona. Whether or not the corona will be visible in a photograph made in this way evidently depends in large degree upon the ratio of its brightness to that of the sky.

G. E. H.

ON THE CAUSE OF THE GRANULATION OF THE SURFACE OF THE SUN.\footnote{Translated from \textit{A. N.} 3279.}

The views of astronomers as to the density of the gases at the surface of the Sun, \textit{i.e.}, in the outer layers of the photosphere, differ very